
Joe Abley <jabley@isc.org>

DNS and Internet Mail
Service Architecture

Agenda

• General Service Architecture Design
Process

• Application to DNS

• Application to Internet Mail

• Brief tutorial overview of DNS and SMTP

• Lots of case studies and commentary from
you (please interrupt frequently)

• You might like to take notes

• These slides will not be a good record of my
handwaving, my elaborate whiteboard
scribbling or of the useful experience you
hear from other people in the room

These Slides

http://www.isc.org/misc/netsa2003/dns-and-mail.pdf

Service Architecture
Design

What is a Service?

• a particular job to do

• names or addresses (or both)

• a set of clients

• dependants and dependencies

• availability requirements

• a tendency to become busier

• security requirements

A Service has...

• It is useful to know what your service
actually does before you think about
deploying it

• if you don’t know what it is supposed to do,
you don’t know whether it is doing its job

Service Function

• How do clients locate the service?

• DNS name?

• IP address?

• Some other method?

• Why do we care?

Service Location

• What are the clients who will use this
service?

• Do I know who they are?

• Can I send them all mail to tell them stuff, if
I need to?

• What will they do if things break?

Identification of Clients

• What other services does this service
depend on, in order to function?

• What other services depend on this
service?

• Dependencies limit availability

Dependencies

• A service is available if it seems to function
correctly from the perspective of a client

• What are the hours during which we need
to ensure the service is available?

• 9am - 5pm, Monday to Friday?

• 24 x 7 x 365?

• Do we get maintenance windows?

Availability

• If the service is any good, the chances are its
workload will increase

• We need to be prepared to increase the
performance capability of the service as it
grows

• We need to be able to measure service
performance so we know when we need to
scale it up

Growth

• We need to be prepared:

• to restrict the use of our service to the
clients we intend to service

• to deal with clients who are not behaving
nicely

• Sometimes this will impose additional
requirements on other services on which
our new service depends

Security

DNS

6-Slide DNS Tutorial

DNS Tutorial 1

• The DNS provides a mechanism for
mapping names to resources

• The DNS consists (principally) of:

• a namespace

• resource records

• nameservers

• The namespace is a tree of labels descended
from a common root

• The namespace consists of zones and
domains

• Zones are connected by delegations

• Delegations are all about authority and
nameservers

DNS Tutorial II

• There is usually a single (”master”) source
of authoritative zone data

• That zone data is distributed to other
authoritative servers (”slaves”) using
mechanisms such as “zone transfer”

• The timers which control zone transfers are
specified in the zone data

DNS Tutorial III

• Resource records are stored in zone data

• Resource records are retrieved by resolvers
sending queries to nameservers

• There are lots of different resource records

• SOA, NS, A, AAAA, MX, SRV, ...

• Each resource record has a TTL specified in
the zone data

DNS Tutorial IV

• Applications typically talk to stub resolvers

• Stub resolvers typically talk to caching
resolvers

• Caching resolvers talk to authoritative
nameservers

DNS Tutorial V

DNS Tutorial VI

Stub Resolver Recursive
Nameserver

Root Server

ORG Server

ISC.ORG Server

Service Separation

• Nameservers can provide multiple functions

• authoritative nameservers

• master server, slave server

• caching resolver (dns cache)

• We are going to consider these functions as
separate services

• Why?

Caching Resolver

• Perform recursive lookups on behalf of stub
resolvers

• Cache responses so that they can be
returned to stub resolvers rapidly

Function

• Service referred to by clients using one or
more IP addresses

• Addresses can be handed out to clients
using dynamic protocols (DHCP, PPP/IPCP)

• They can also be hard-coded, and we should
expect this to happen

• Renumbering will probably be painful

Names, Addresses

• A well-known set of clients

• “dial-up users”

• “DHCP clients”

• “workstations within our network”

Clients

• What must work in order for the Caching
Resolver to work?

• Network access to clients

• Network access to external nameservers,
or

• Network access to one or more caches

Dependencies

• What depends on the Caching Resolver
service?

• Browsing the Web, Downloading Stuff

• Mail, Instant Messaging

• Printing, File Service, maybe

• Everything

Dependants

• The Caching Resolver inherits all the
availability requirements of all dependent
services

• For an ISP (and most non-trivial enterprises)
this means the service needs to be up all the
time

• Maybe we get a maintenance window

Availability

• As the use of network services increases, so
the load on the Caching Resolver service
will increase

• For most enterprises this growth won’t
require a very rapid increase in CPU or
network

• For ISPs, the growth might be higher

Growth

• The DNS is insecure in many ways

• Details available in the DNS workshop

• There isn’t really a good way to secure the
data obtained from the DNS today, but
maybe there will be some day

• We can restrict access to known clients

Security

• What are the implications for designing our
service architecture?

Data Gathering Over

• We ideally want the Caching Resolver
service to always be available, since so many
things break when it’s not available

• Accidents will happen, but we’ll try to make
ourselves invulnerable to as many of them
as possible

• helpdesk phone ring bad

Huge Availability

• We don’t want to renumber our caching
nameservers, ever, if we can help it

• Avoid topology-sensitive addresses

• Avoid unstable addresses, e.g. PA addresses
allocated by ISPs

• Try very hard to hand out addresses
dynamically wherever possible (DHCP, PPP/
IPCP) so that we minimise the pain if
renumbering is ever necessary

Address Stability

• Give servers topologically-relevant
addresses for management

• Give services topologically-independent
addresses, which can be routed towards
particular servers

• Allows you to move services between
machines, and to re-plumb your network
without having to renumber services

Service Addresses

• It is usual for servers to have a single IP
address, and for routers not to require
extra configuration to reach particular
servers

• Adding complexity might cause operational
confusion

• We don’t want the measures we take to
increase our uptime to cause network
problems

Danger!

• We can provide service on a particular
address in more than one place

• Local load balancing

• (”layer-4 switches”, “content switches”)

• Anycast

• using the local network’s routing system
to distribute service load

Service Distribution

• We should deploy more than one server (or
set of servers, if distributed)

• located in different places

• each with a unique, stable address

• each maybe running different DNS software

Server Diversity

• Caching Resolvers typically require less
maintenance than other services, and don’t
place much demand on the underlying OS

• Deploy cheap servers which run the
Caching Resolver service, and nothing else

• Cheap but Reliable!

Single-Purpose Servers

• Add more servers (load-balancing switch,
anycast, additional service addresses)

• Introduce a cache hierarchy

Growth

• Individual nameservers will produce
statistics which you can gather and use to
trend performance data

• Test infrastructure

• distributed, if using anycast

• Caching Resolver failures should ideally be
caught early, before too many other things
start to break

• more than just ping

Measurement

• Reduce the possible impact of dependencies
by designing around them

• Choose IP addresses wisely

• Use Service Addresses

• Service Distribution

• Cache Hierarchy

• Measure performance, so you know how
you are doing

Summary

Authoritative
Nameservers

• Serve authoritative zone data to recursive
resolvers

• Publish authoritative zone data in the DNS

• Delegate authority for child zones to other
nameservers

Function

• Service referred to by clients using one or
more IP addresses

• Addresses are obtained by clients from
other authoritative nameservers
(nameservers for the parent zone)

• Renumbering will probably be painful (why?)

Names, Addresses

• A set of clients which we can’t enumerate

• “every caching resolver in the Internet”

Clients

• What must work in order for the
Authoritative Nameserver service to work?

• Network access to clients (i.e. to the
Internet)

• Access to authoritative zone data

Dependencies

• What depends on the Authoritative
Nameserver service?

• Every other service we want to make
available which is referred to by name

• Internet Mail

• (downtime mitigated by external caches)

Dependants

• Popularly-requested records will be cached
externally, so our availability requirements
are not as high as for the caching resolver
service, maybe

• Things will break in strange, unidentifiable
ways if the service is down for long

• Probably we can tolerate downtime for
individual servers, for maintenance

• We should try for very high uptime across
the NS set

Availability

• If we need to publish volatile data in the
DNS, then our query load will go up (since
fewer queries will be answered by caches)

• If we publish data which relates to services
which are growing, our query load will go up

• If we host more zones, our query load will
go up

Growth

• We should be careful to provide our usual
high levels of system security on
authoritative nameservers (why?)

• One day, we might have to worry about
DNSSEC

• We can’t enumerate our set of clients, so
we can’t restrict access to them

• We are vulnerable to nameserver or
protocol exploits (so patch early, patch
often)

Security

• What are the implications for designing our
service architecture?

Data Gathering Over

• Our requirements for uptime are not as
hellish as for the Caching Resolver service

• We should aim for very high uptime, and
take steps to ensure that downtime of
individual servers are tightly controlled

• Accidents will happen, but we’ll try to make
ourselves invulnerable to as many of them
as possible

Good Availability

• We don’t particularly want to renumber our
authoritative nameservers, but we can be
fairly sure that people haven’t hard-coded
them

• Talking to registries can be tedious, and is
best avoided if possible

• Avoid topology-sensitive addresses

• Avoid unstable addresses, e.g. PA addresses
allocated by ISPs

Address Stability

• The DNS delegation tree depends on glue
records for delegations to nameservers that
are named in-zone

• Changing glue records can be difficult,
particularly if they are used for high-profile
delegations

Glue Records

• Delegating zones to nameservers which are
named deep within some other hierarchy
can cause delays and timeouts for resolvers

• Choosing at least some nameservers which
are named in-zone (and are hence available
via glue) is a good idea

Resolver Distance

• Useful for the usual reasons:

• Give servers topologically-relevant
addresses for management

• Give services topologically-independent
addresses, which can be routed towards
particular servers

• Allows you to move services between
machines, and to re-plumb your network
without having to renumber services

Service Addresses

• We should provide service in more than
one place, using multiple NS records

• High geographic dispersion

• The intention is to make the service highly
available to the entire Internet, and we have
minimal control over the majority of the
Internet

Service Distribution

• There are commercial providers of slave
DNS service

• There are lots of free providers of slave
DNS service

• (look around you)

Slave Servers

• It can be an advantage that you don’t
personally run slave servers

• if you don’t have administrative access,
you can’t break them

• It can also be a disadvantage

• getting changes made might take time

• you are dependent on others to avoid
vulnerabilities and mistakes

Other Peoples’ Slaves

• You do not want to use slave servers which
are also caching resolvers (why?)

• Recursion should be turned off,
completely

• You should check slave servers which are
run by other people periodically, to make
sure that recursion hasn’t been enabled

No Recursion

• Add more NS records: possibly painful
(why?)

• Distribute service for each nameserver
address, as we discussed with the caching
resolver

• (load-balancing switch, anycast, additional
service addresses)

• You can buy this

Growth

• Individual nameservers will produce
statistics which you can gather and use to
trend performance data

• Test infrastructure

• distributed, if using anycast

• Authoritative nameserver failures should
be caught early, before data expires from
caches and slaves

• more than just ping

Measurement

• Reduce the possible impact of dependencies
by designing around them

• Choose IP addresses wisely

• Use Service Addresses

• Service Distribution

• Measure performance, so you know how
you are doing

Summary

Internet Mail

Six-Slide Mail Tutorial

Tutorial I

• Mail User Agent (MUA)

• what a user uses

• sends mail using SMTP

• receives mail using IMAP, or POP, or a file
system

• Mail Transfer Agent (MTA)

• general term

• receives mail using SMTP

• sends mail to other hosts using SMTP

• passes mail to a Mail Delivery Agent

Tutorial II

• Mail Delivery Agent (MDA)

• accepts mail from an MTA

• delivers it into some suitable database,
ready for retrieval by other servers (IMAP,
POP, web mail)

Tutorial III

• SMTP is the Simple Mail Transfer Protocol

• simple, line-based textual protocol

• HELO, MAIL FROM, RCPT TO, DATA

• Message Headers, Message Bodies

• Envelope Addresses

Tutorial IV

• Appropriate servers for delivering mail are
identified using the DNS, in general

• MX records, A records

• MUAs usually use external MTAs to do this
work for them, because they are stupid
(”smart host”)

• somewhat like stub resolver/caching
resolver

Tutorial V

• Spam makes people angry

Tutorial VI

• SMTP Servers can provide multiple
functions, and in this tutorial we will
separate them into four classes:

• Relay Agent (”Smart Host”)

• Mail Router (for outbound mail)

• Mail Exchanger (for inbound mail)

• Mail Store

• with some appropriate delivery agent

Service Separation

Relay Agent

• Accept mail from MUAs using SMTP

• possibly using authentication (why?) or
TLS (why?) or both (why?)

• Send that mail to a Mail Router

• Mess with users’ messages

• strip known-bad Outbreak Express
viruses, raise red flags on spam

• add irritating corporate messages

Function

• Service referred to by clients using a DNS
name

• The DNS name for the Relay Agent will
typically be hard-coded, and it will be
annoying for users to have to change it

• Renaming will probably be painful

• we will need to support the old name for
ever

Names, Addresses

• A well-known set of clients

• “dial-up users”

• “DHCP clients”

• “workstations within our network”

• “clients on the Internet who authenticate
in some appropriate fashion”

Clients

• What must work in order for the Relay
Agent to work?

• Network access to clients

• (access to some authentication service)

• Network access to Mail Routers

• Access to the DNS (Caching Resolvers)

• As long as clients and send mail, there is no
immediate fault to complain about (maybe
eliminate the DNS dependency for that)

Dependencies

• What depends on the Mail Relay service?

• Users being able to submit mail for
sending

• That’s about it (good)

Dependants

• The list of dependants is nice and small, so
the availability of the Mail Relay service can
be managed simply

• We can probably get a maintenance window

Availability

• As people send more mail, we will need to
scale up our server

• As people send more ridiculous
attachments, we will need to buy more disk

• For most enterprises this growth won’t
require a very rapid increase in CPU or
network

• For ISPs, the growth might be higher

Growth

• We need to make sure we are careful who
we relay for

• We need to make sure we are careful who
we relay for

• We need to make sure we are careful who
we relay for

• Maybe we’ll use some port other than 25
(why?)

Security

• What are the implications for designing our
service architecture?

Data Gathering Over

• We need to be fairly sure we are up when
we are supposed to be up

• Downtime for maintenance is acceptable, so
long as we tell people (for enterprises)

• Downtime for maintenance may not be
desirable, since people are stupid and don’t
listen (for ISPs)

Good Availability

• Clients are going to hard-code the name of
our Mail Relay in their MUAs

• There are lots of MUAs, and we really don’t
want to have to support them all over the
phone

• Choose a simple name that is easy to spell,
and try not to change it

• some ISPs omit the domain part by
default, and only give it to customers if the
customers’ operating system can’t learn it

Name Stability

• Not so dramatically useful for the Mail Relay
service, since people use names rather than
addresses, but still somewhat good

• We can change addresses in the DNS

• but this relies on DNS stub resolvers and
downstream caching resolvers being
sensible

• there is invariably a delay involved in DNS
change propagation

Service Addresses

• We might decide to distribute Mail Relay
servers to different places, so that we’re not
so dependent on the network performing
well

• SSL re-keying, TCP timeouts over high-
latency links

• We might decide to deploy clusters of Mail
Relay servers, so we don’t need planned
maintenance windows

Service Distribution

• Add more CPU

• Add more disk

• Add more servers

• Add more (low-loss) network

Growth

• Monitor queue lengths, free disk space,
server load

• Test infrastructure

• Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

• Measure propagation delay (to off-net
boxes, or via off-net auto-responders)

• more than just ping

Measurement

• Do not be an Open Relay

• Choose names wisely

• Use Service Addresses (maybe)

• Service Distribution (maybe)

• Measure performance, so you know how
you are doing

Summary

Mail Router

• Accept mail from Mail Relays

• Relay that mail to other SMTP servers in the
Internet (or to local Mail Exchangers)

• Never touch message content

• Dedicated Outbound Mail Facility (why?)

Function

• Service referred to by clients using a DNS
name

• Renaming is trivial

• Names are not important

• but don’t make them too silly, since they
will show up in Received headers

Names, Addresses

• A well-known set of clients

• “Mail Relays”

• that’s it

Clients

• What must work in order for the Mail
Router to work?

• Network access to clients

• Network access to our Mail Exchangers
(for local mail)

• Network access to other peoples’ Mail
Exchangers (i.e. the Internet)

• Access to the DNS (Caching Resolvers)

Dependencies

• What depends on the Mail Relay service?

• Mail Relays being able to send mail to
other places

• That’s about it (good)

Dependants

• The list of dependants is nice and small, so
the availability of the Mail Router service
can be managed simply

• We can definitely get a maintenance window

• If we’re down for long, though, we put
pressure on other servers’ mail queues, and
it might take time for our queues to clear

• Mail delays will eventually make the helpdesk
phone ring (bad)

Availability

• Same as the Mail Relay

• As people send more mail, we will need to
scale up our server

• As people send more ridiculous
attachments, we will need to buy more
disk

• For most enterprises this growth won’t
require a very rapid increase in CPU or
network

• For ISPs, the growth might be higher

Growth

• We need to make sure we are careful who
we relay for

• We should not relay for any hosts other
than Mail Relays

• In fact, we should refuse SMTP connections
from any SMTP client which we don’t know

• firewall the box off from the Internet

Security

• What are the implications for designing our
service architecture?

Data Gathering Over

• We need to be fairly sure we are up when
we are supposed to be up

• Downtime for maintenance is acceptable, so
long as we don’t cause ourselves queue pain
by being down for too long

• We don’t really need to notify anybody for
short maintenance operations

Fair Availability

• Largely irrelevant, however

• Amusing and rude hostnames will appear
in Received headers, so exercise some
restraint

• Difficult-to-spell or confusingly-similar
hostnames will cause support headaches
for your abuse department

Name Stability

• Not spectacularly useful for the Mail Router
service

• We can change addresses in the DNS

• However, if everything else is running on
Service Addresses, maybe it’s easier not to
be different

Service Addresses

• In order to avoid deep queues on Mail
Relays, we probably want to deploy a Mail
Router everywhere we have a Mail Relay

• that way we have a nice place to worry
about disk and CPU upgrades that the
users don’t connect to

• We can deploy servers in clusters

Service Distribution

• Make sure your server doesn’t look like a
spam exploder

• proper reverse DNS

• handle abuse reports promptly and
properly

• Use addresses which are not in similar
ranges to those given out to customers

Look Legitimate

• Add more CPU

• Add more disk

• Add more servers

• Add more (low-loss) network

• Tune TCP stacks

• Use appropriate software, optimised to run
queues efficiently

Growth

• Monitor queue lengths, free disk space,
server load

• Test infrastructure

• Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

• more than just ping

Measurement

• Definitely do not be an Open Relay

• Use Service Addresses (maybe)

• Distribution of servers in coordination with
Mail Relay servers

• Appear well-set-up (reverse DNS, not on
blacklists)

• Measure performance, so you know how
you are doing

Summary

Mail Exchanger

• Accept mail from other servers on the
Internet using SMTP

• almost certainly without authentication or
TLS (why?)

• Mess with users’ messages

• strip known-bad Outbreak Express
viruses, raise red flags on spam

• Deliver good mail to the Mail Store

• Dedicated Inbound Mail Facility (why?)

Function

• Service referred to by clients using a DNS
name

• Renaming will probably not be particularly
painful (small DNS change)

• we will need to support the old name a
while (RR TTL*N)

• sometimes renaming can be useful
(spammers don’t always use the DNS)

Names, Addresses

• A set of clients which cannot be
enumerated

• “other hosts on the Internet”

• some are nice

• some are evil (which are which?)

Clients

• What must work in order for the Mail
Exchanger to work?

• Network access to clients (i.e. the
Internet)

• Knowledge of what constitutes a local
mailbox (cf dictionary attacks)

• Access to the Mail Store service

• Access to the DNS (Caching Resolver
Service) (why?)

Dependencies

• What depends on the Mail Exchange
service?

• Users being able to receive mail that was
sent from other places

• That’s about it (good)

Dependants

• The list of dependants is nice and small, so
the availability of the Mail Exchange service
can be managed simply

• We can probably do brief maintenance
without telling people, much

• Long maintenance periods willl result in mail
queueing up in other places, and may cause
noticable delays (helpdesk phone ring bad)

Availability

• As people receive more spam, uh, mail, we
will need to scale up our server

• As people send our users more ridiculous
attachments, we will need to buy more disk

• not that much disk

• we can use other peoples’ disk for this, to
a large extent

Growth

• We don’t relay for anybody

• Not anybody

• Not even ourselves

Security

• The Mail Exchanger is the entry point for
spam into our network

• (our Mail Relays can receive spam, but only
from our own customers, and we know
where they live)

Spam

• What are the implications for designing our
service architecture?

Data Gathering Over

• We need to be fairly sure we are up when
we are supposed to be up

• Downtime for maintenance is acceptable,
and for short maintenance we might not
need notification

• Longer periods of downtime are
problematic, since users will notice

• (helpdesk phone, etc, etc)

Good Availability

• Name stability is not particularly important

• Choice of name is not particularly
important, except that, again,

• people will read names from Received
headers over the phone

Name Stability

• Not spectacularly useful for the Mail
Exchanger service

• We can change addresses in the DNS

• However, again, if everything else is running
on Service Addresses, maybe it’s easier not
to be different

Service Addresses

• If there are periods of unreachability for
Mail Exchangers, then mail will get delayed

• helpdesk phone rin, blah, blah

• The cost of queueing the mail that can’t be
delivered is shared amongst all kinds of
other people you don’t know

• maybe you don’t care so much about that

• We can deploy servers in clusters

• We can add more MX records (probably)

Service Distribution

• Mail Exchangers need to send mail (why?)

• Send the mail via Mail Routers, rather than
queueing it yourself

• concentrate all your queue handling on
dedicated boxes

Outbound Mail

• Add more CPU (SpamAssassin eats CPU)

• Add more disk

• Add more servers to clusters

• Add more MXes (difficult?)

• Add more (low-loss) network

Growth

• Monitor queue lengths, free disk space,
server load

• Test infrastructure

• Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

• Attempt to relay mail to other places, and
sound LOUD ALARMS when it works

• more than just ping

Measurement

• This is not a Spam Tutorial

• There will be no shouting, please

Spam

• There are some hosts we can refuse
connections from, based on some criteria
which makes sense for us

• (reverse DNS, blacklists, etc)

• Other messages might require their
message bodies to be examined before we
can tell that they are spam

• (DCC, SpamAssassin, Habeas, etc)

• more expensive

Spam

• Some customers like to buy domains and
arrange for mail addressed to *@their-
domain to be delivered into one mailbox

• very, very expensive to support

• you will run out of disk very quickly

• perl processes will consume all your CPU

• you will become obsessed and constantly
enraged by spammers, and you will never
sleep again

Wildcard Mailboxes

• Do not relay at all, for anybody, ever

• Choose names wisely

• Use Service Addresses (maybe)

• Service Distribution (maybe)

• Measure performance, so you know how
you are doing

• No wildcard mailboxes, if possible

Summary

Mail Store

• Accept mail from Mail Exchangers using
SMTP

• Deliver that mail to local mailboxes

• Make local mailboxes available to clients
(IMAP, POP, web mail, etc)

Function

• Service referred to by clients using a DNS
name

• The name of the servers are really not
important (this is for SMTP delivery, not
IMAP/POP access)

• usual comments on stupid names and
Received headers apply

Names, Addresses

• A distinct, small set of clients who never call
the helpdesk

• Mail Exchangers

• We may well share hardware with IMAP/
POP services

• clients of those services do call the
helpdesk

Clients

• What must work in order for the Mail Store
to work?

• Network access to clients (i.e. Mail
Exchangers)

• Knowledge of what constitutes a local
mailbox in order to be able to deliver mail
appropriately

Dependencies

• What depends on the Mail Exchange
service?

• Users being able to receive mail that was
sent from other places

• That’s about it (good)

Dependants

• The list of dependants is nice and small, so
the availability of the Mail Store service can
be managed simply

• We can probably get a maintenance window

• Customers will notice when the platforms
go down (although not so much if just the
Mail Store service goes down)

Availability

• As people receive more spam, uh, mail, we
will need to scale up our server

• As people send our users more ridiculous
attachments, we will need to buy more disk

• lots and lots of disk

• a strategy for removing unread mail from
mailboxes after some time is probably
sensible

• strategy for refusing more mail to
mailboxes which are already too full

Growth

• We don’t relay for anybody

• Not anybody

• Not even ourselves

• We don’t even accept SMTP connections
from anybody other than Mail Exchangers

• if we are liberal with this, users will start
using the POP server to send mail through,
and our dependencies just blew out

Security

• What are the implications for designing our
service architecture?

Data Gathering Over

• We need to be fairly sure we are up when
we are supposed to be up

• The servers that the Mail Store service runs
on will probably be customer-visible (POP,
IMAP) so they have corresponding uptime
requirements

• The Mail Store service itself can go down
for short periods without people noticing

Good Availability

• Name stability is not particularly important

• Choice of name is not particularly
important, except that, again,

• people will read names from Received
headers over the phone

Name Stability

• Not spectacularly useful for the Mail Store
service, but much more useful for IMAP/
POP services

• We can change addresses in the DNS

• If everything else is running on Service
Addresses, maybe it’s easier not to be
different

Service Addresses

• Distributing Mail Stores leads the slight
problem that storing mail requires disk, and
clients tend to like their mail to be stored in
one place

• Can distribute users amongst mail stores

• support headache

• Can distribute storage problem to
dedicated boxes

• network storage headache

Service Distribution

• Use a proxy service to provide a consistent
entry-point for users to retrieve mail

• Proxy servers can be distributed (clusters,
anycast)

• Proxy servers connect to one of many POP/
IMAP servers, depending on where the
user’s mail is kept

• Can move mailboxes without users knowing

IMAP/POP Proxy

• Add more CPU (maybe)

• Add more disk (definitely)

• Maybe distribute users between Mail Store
services

• POP/IMAP Proxies

• Directory service for identifying location
of user’s mail store (and existence of user,
coincidentally, for Mail Exchanger)

Growth

• Monitor queue lengths, free disk space,
server load

• Test infrastructure

• Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

• Attempt to relay mail to other places, and
sound LOUD ALARMS when it works

• more than just ping

Measurement

• Ideally we don’t worry about spam on the
Mail Store at all -- it has already been dealt
with by the Mail Exchanger

• this means our IMAP/POP servers can be
nice and snappy, unencumbered by the
SpamAssassin CPU drain effect

Spam

• Do not relay at all, for anybody, ever

• Choose names wisely

• Use Service Addresses (maybe)

• Service Distribution (maybe, with proxies)

• Measure performance, so you know how
you are doing

Summary

Summary of Summaries

General Approach
• Try to isolate big, complicated services into

their component bits

• not all components are visible by users

• helpdesk phone ring bad

• distribute performance management
problem

• distribute software selection problem

• you can even run Exchange, if you want

• The most important service to get right

• Every service you provide to users, pretty
much, depends on DNS

• When the DNS breaks, users notice

• helpdesk phone ring bad

DNS

• Arguably the most important application on
the Internet

• Many of the components are very forgiving
of transient network or server problems

• We need to be careful about what we send
(we must punish our own spammers)

• We need to be careful about what we
receive (we need to expect other people to
be too lenient with their own spammers)

Internet Mail

• We haven’t talked about specific packages
or products

• that’s because the architecture is more
important than the details of which
package you use

• separate functionality

• use software that makes sense

What Else?

• BIND, other DNS implementations

• postfix, sendmail (semi-eek!), qmail, exim,
Exchange (eek!), others

• mailscanner, mimedefang, DCC,
SpamAssassin (well, ok we mentioned
SpamAssassion), lots of others

• MAPS RBL and friends

Some Names

The End

http://www.isc.org/misc/netsa2003/dns-and-mail.pdf

Joe Abley <jabley@isc.org>

