• Main Page
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

time.c

Go to the documentation of this file.
00001 /**********************************************************************
00002 
00003   time.c -
00004 
00005   $Author: akr $
00006   created at: Tue Dec 28 14:31:59 JST 1993
00007 
00008   Copyright (C) 1993-2007 Yukihiro Matsumoto
00009 
00010 **********************************************************************/
00011 
00012 #include "ruby/ruby.h"
00013 #include <sys/types.h>
00014 #include <time.h>
00015 #include <errno.h>
00016 #include "ruby/encoding.h"
00017 
00018 #ifdef HAVE_UNISTD_H
00019 #include <unistd.h>
00020 #endif
00021 
00022 #include <float.h>
00023 #include <math.h>
00024 
00025 #include "timev.h"
00026 
00027 static ID id_divmod, id_mul, id_submicro, id_nano_num, id_nano_den, id_offset;
00028 static ID id_eq, id_ne, id_quo, id_div, id_cmp, id_lshift;
00029 
00030 #define NDIV(x,y) (-(-((x)+1)/(y))-1)
00031 #define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
00032 #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
00033 #define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
00034 
00035 static int
00036 eq(VALUE x, VALUE y)
00037 {
00038     if (FIXNUM_P(x) && FIXNUM_P(y)) {
00039         return x == y;
00040     }
00041     return RTEST(rb_funcall(x, id_eq, 1, y));
00042 }
00043 
00044 static int
00045 cmp(VALUE x, VALUE y)
00046 {
00047     if (FIXNUM_P(x) && FIXNUM_P(y)) {
00048         if ((long)x < (long)y)
00049             return -1;
00050         if ((long)x > (long)y)
00051             return 1;
00052         return 0;
00053     }
00054     return rb_cmpint(rb_funcall(x, id_cmp, 1, y), x, y);
00055 }
00056 
00057 #define ne(x,y) (!eq((x),(y)))
00058 #define lt(x,y) (cmp((x),(y)) < 0)
00059 #define gt(x,y) (cmp((x),(y)) > 0)
00060 #define le(x,y) (cmp((x),(y)) <= 0)
00061 #define ge(x,y) (cmp((x),(y)) >= 0)
00062 
00063 static VALUE
00064 add(VALUE x, VALUE y)
00065 {
00066     if (FIXNUM_P(x) && FIXNUM_P(y)) {
00067         long l = FIX2LONG(x) + FIX2LONG(y);
00068         if (FIXABLE(l)) return LONG2FIX(l);
00069         return LONG2NUM(l);
00070     }
00071     if (TYPE(x) == T_BIGNUM) return rb_big_plus(x, y);
00072     return rb_funcall(x, '+', 1, y);
00073 }
00074 
00075 static VALUE
00076 sub(VALUE x, VALUE y)
00077 {
00078     if (FIXNUM_P(x) && FIXNUM_P(y)) {
00079         long l = FIX2LONG(x) - FIX2LONG(y);
00080         if (FIXABLE(l)) return LONG2FIX(l);
00081         return LONG2NUM(l);
00082     }
00083     if (TYPE(x) == T_BIGNUM) return rb_big_minus(x, y);
00084     return rb_funcall(x, '-', 1, y);
00085 }
00086 
00087 #if !(HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG)
00088 static int
00089 long_mul(long x, long y, long *z)
00090 {
00091     unsigned long a, b, c;
00092     int s;
00093     if (x == 0 || y == 0) {
00094         *z = 0;
00095         return 1;
00096     }
00097     if (x < 0) {
00098         s = -1;
00099         a = (unsigned long)-x;
00100     }
00101     else {
00102         s = 1;
00103         a = (unsigned long)x;
00104     }
00105     if (y < 0) {
00106         s = -s;
00107         b = (unsigned long)-y;
00108     }
00109     else {
00110         b = (unsigned long)y;
00111     }
00112     if (a <= ULONG_MAX / b) {
00113         c = a * b;
00114         if (s < 0) {
00115             if (c <= (unsigned long)LONG_MAX + 1) {
00116                 *z = -(long)c;
00117                 return 1;
00118             }
00119         }
00120         else {
00121             if (c <= (unsigned long)LONG_MAX) {
00122                 *z = (long)c;
00123                 return 1;
00124             }
00125         }
00126     }
00127     return 0;
00128 }
00129 #endif
00130 
00131 static VALUE
00132 mul(VALUE x, VALUE y)
00133 {
00134     if (FIXNUM_P(x) && FIXNUM_P(y)) {
00135 #if HAVE_LONG_LONG && SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG
00136         LONG_LONG ll = (LONG_LONG)FIX2LONG(x) * FIX2LONG(y);
00137         if (FIXABLE(ll))
00138             return LONG2FIX(ll);
00139         return LL2NUM(ll);
00140 #else
00141         long z;
00142         if (long_mul(FIX2LONG(x), FIX2LONG(y), &z))
00143             return LONG2NUM(z);
00144 #endif
00145     }
00146     if (TYPE(x) == T_BIGNUM)
00147         return rb_big_mul(x, y);
00148     return rb_funcall(x, '*', 1, y);
00149 }
00150 
00151 #define div(x,y) (rb_funcall((x), id_div, 1, (y)))
00152 
00153 static VALUE
00154 mod(VALUE x, VALUE y)
00155 {
00156     switch (TYPE(x)) {
00157       case T_BIGNUM: return rb_big_modulo(x, y);
00158       default: return rb_funcall(x, '%', 1, y);
00159     }
00160 }
00161 
00162 #define neg(x) (sub(INT2FIX(0), (x)))
00163 #define lshift(x,y) (rb_funcall((x), id_lshift, 1, (y)))
00164 
00165 static VALUE
00166 quo(VALUE x, VALUE y)
00167 {
00168     VALUE ret;
00169     if (FIXNUM_P(x) && FIXNUM_P(y)) {
00170         long a, b, c;
00171         a = FIX2LONG(x);
00172         b = FIX2LONG(y);
00173         if (b == 0) rb_num_zerodiv();
00174         c = a / b;
00175         if (c * b == a) {
00176             return LONG2NUM(c);
00177         }
00178     }
00179     ret = rb_funcall(x, id_quo, 1, y);
00180     if (TYPE(ret) == T_RATIONAL &&
00181         RRATIONAL(ret)->den == INT2FIX(1)) {
00182         ret = RRATIONAL(ret)->num;
00183     }
00184     return ret;
00185 }
00186 
00187 #define mulquo(x,y,z) ((y == z) ? x : quo(mul(x,y),z))
00188 
00189 static void
00190 divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
00191 {
00192     VALUE tmp, ary;
00193     tmp = rb_funcall(n, id_divmod, 1, d);
00194     ary = rb_check_array_type(tmp);
00195     if (NIL_P(ary)) {
00196         rb_raise(rb_eTypeError, "unexpected divmod result: into %s",
00197                  rb_obj_classname(tmp));
00198     }
00199     *q = rb_ary_entry(ary, 0);
00200     *r = rb_ary_entry(ary, 1);
00201 }
00202 
00203 #if SIZEOF_LONG == 8
00204 # define INT64toNUM(x) LONG2NUM(x)
00205 # define UINT64toNUM(x) ULONG2NUM(x)
00206 #elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
00207 # define INT64toNUM(x) LL2NUM(x)
00208 # define UINT64toNUM(x) ULL2NUM(x)
00209 #endif
00210 
00211 #if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
00212     typedef uint64_t uwideint_t;
00213     typedef int64_t wideint_t;
00214     typedef uint64_t WIDEVALUE;
00215     typedef int64_t SIGNED_WIDEVALUE;
00216 #   define WIDEVALUE_IS_WIDER 1
00217 #   define UWIDEINT_MAX UINT64_MAX
00218 #   define WIDEINT_MAX INT64_MAX
00219 #   define WIDEINT_MIN INT64_MIN
00220 #   define FIXWINT_P(tv) ((tv) & 1)
00221 #   define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
00222 #   define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
00223 #   define FIXWV_MAX (((int64_t)1 << 62) - 1)
00224 #   define FIXWV_MIN (-((int64_t)1 << 62))
00225 #   define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
00226 #   define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
00227 #   define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
00228 #else
00229     typedef unsigned long uwideint_t;
00230     typedef long wideint_t;
00231     typedef VALUE WIDEVALUE;
00232     typedef SIGNED_VALUE SIGNED_WIDEVALUE;
00233 #   define WIDEVALUE_IS_WIDER 0
00234 #   define UWIDEINT_MAX ULONG_MAX
00235 #   define WIDEINT_MAX LONG_MAX
00236 #   define WIDEINT_MIN LONG_MIN
00237 #   define FIXWINT_P(v) FIXNUM_P(v)
00238 #   define FIXWV_MAX FIXNUM_MAX
00239 #   define FIXWV_MIN FIXNUM_MIN
00240 #   define FIXWVABLE(i) FIXABLE(i)
00241 #   define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
00242 #   define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
00243 #endif
00244 
00245 #define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
00246 #define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
00247 #define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
00248 
00249 /* #define STRUCT_WIDEVAL */
00250 #ifdef STRUCT_WIDEVAL
00251     /* for type checking */
00252     typedef struct {
00253         WIDEVALUE value;
00254     } wideval_t;
00255     static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
00256 #   define WIDEVAL_GET(w) ((w).value)
00257 #else
00258     typedef WIDEVALUE wideval_t;
00259 #   define WIDEVAL_WRAP(v) (v)
00260 #   define WIDEVAL_GET(w) (w)
00261 #endif
00262 
00263 #if WIDEVALUE_IS_WIDER
00264     static inline wideval_t
00265     wint2wv(wideint_t wi)
00266     {
00267         if (FIXWVABLE(wi))
00268             return WINT2FIXWV(wi);
00269         else
00270             return WIDEVAL_WRAP(INT64toNUM(wi));
00271     }
00272 #   define WINT2WV(wi) wint2wv(wi)
00273 #else
00274 #   define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
00275 #endif
00276 
00277 static inline VALUE
00278 w2v(wideval_t w)
00279 {
00280 #if WIDEVALUE_IS_WIDER
00281     if (FIXWV_P(w))
00282         return INT64toNUM(FIXWV2WINT(w));
00283     return (VALUE)WIDEVAL_GET(w);
00284 #else
00285     return WIDEVAL_GET(w);
00286 #endif
00287 }
00288 
00289 #if WIDEVALUE_IS_WIDER
00290 static int
00291 bdigit_find_maxbit(BDIGIT d)
00292 {
00293     int res = 0;
00294     if (d & ~(BDIGIT)0xffff) {
00295         d >>= 16;
00296         res += 16;
00297     }
00298     if (d & ~(BDIGIT)0xff) {
00299         d >>= 8;
00300         res += 8;
00301     }
00302     if (d & ~(BDIGIT)0xf) {
00303         d >>= 4;
00304         res += 4;
00305     }
00306     if (d & ~(BDIGIT)0x3) {
00307         d >>= 2;
00308         res += 2;
00309     }
00310     if (d & ~(BDIGIT)0x1) {
00311         d >>= 1;
00312         res += 1;
00313     }
00314     return res;
00315 }
00316 
00317 static VALUE
00318 rb_big_abs_find_maxbit(VALUE big)
00319 {
00320     BDIGIT *ds = RBIGNUM_DIGITS(big);
00321     BDIGIT d;
00322     long len = RBIGNUM_LEN(big);
00323     VALUE res;
00324     while (0 < len && ds[len-1] == 0)
00325         len--;
00326     if (len == 0)
00327         return Qnil;
00328     res = mul(LONG2NUM(len-1), INT2FIX(SIZEOF_BDIGITS * CHAR_BIT));
00329     d = ds[len-1];
00330     res = add(res, LONG2FIX(bdigit_find_maxbit(d)));
00331     return res;
00332 }
00333 
00334 static VALUE
00335 rb_big_abs_find_minbit(VALUE big)
00336 {
00337     BDIGIT *ds = RBIGNUM_DIGITS(big);
00338     BDIGIT d;
00339     long len = RBIGNUM_LEN(big);
00340     long i;
00341     VALUE res;
00342     for (i = 0; i < len; i++)
00343         if (ds[i])
00344             break;
00345     if (i == len)
00346         return Qnil;
00347     res = mul(LONG2NUM(i), INT2FIX(SIZEOF_BDIGITS * CHAR_BIT));
00348     d = ds[i];
00349     res = add(res, LONG2FIX(bdigit_find_maxbit(d & (~d-1))));
00350     return res;
00351 }
00352 
00353 static wideval_t
00354 v2w_bignum(VALUE v)
00355 {
00356     long len = RBIGNUM_LEN(v);
00357     BDIGIT *ds;
00358     wideval_t w;
00359     VALUE maxbit;
00360     ds = RBIGNUM_DIGITS(v);
00361     w = WIDEVAL_WRAP(v);
00362     maxbit = rb_big_abs_find_maxbit(v);
00363     if (NIL_P(maxbit))
00364         return WINT2FIXWV(0);
00365     if (lt(maxbit, INT2FIX(sizeof(wideint_t) * CHAR_BIT - 2)) ||
00366         (eq(maxbit, INT2FIX(sizeof(wideint_t) * CHAR_BIT - 2)) &&
00367          RBIGNUM_NEGATIVE_P(v) &&
00368          eq(rb_big_abs_find_minbit(v), INT2FIX(sizeof(wideint_t) * CHAR_BIT - 2)))) {
00369         wideint_t i;
00370         i = 0;
00371         while (len)
00372             i = (i << sizeof(BDIGIT)*CHAR_BIT) | ds[--len];
00373         if (RBIGNUM_NEGATIVE_P(v)) {
00374             i = -i;
00375         }
00376         w = WINT2FIXWV(i);
00377     }
00378     return w;
00379 }
00380 #endif
00381 
00382 static inline wideval_t
00383 v2w(VALUE v)
00384 {
00385 #if WIDEVALUE_IS_WIDER
00386     if (FIXNUM_P(v)) {
00387         return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
00388     }
00389     else if (TYPE(v) == T_BIGNUM &&
00390         RBIGNUM_LEN(v) * sizeof(BDIGIT) <= sizeof(WIDEVALUE)) {
00391         return v2w_bignum(v);
00392     }
00393 #endif
00394     return WIDEVAL_WRAP(v);
00395 }
00396 
00397 static int
00398 weq(wideval_t wx, wideval_t wy)
00399 {
00400 #if WIDEVALUE_IS_WIDER
00401     if (FIXWV_P(wx) && FIXWV_P(wy)) {
00402         return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
00403     }
00404     return RTEST(rb_funcall(w2v(wx), id_eq, 1, w2v(wy)));
00405 #else
00406     return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
00407 #endif
00408 }
00409 
00410 static int
00411 wcmp(wideval_t wx, wideval_t wy)
00412 {
00413     VALUE x, y;
00414 #if WIDEVALUE_IS_WIDER
00415     if (FIXWV_P(wx) && FIXWV_P(wy)) {
00416         wideint_t a, b;
00417         a = FIXWV2WINT(wx);
00418         b = FIXWV2WINT(wy);
00419         if (a < b)
00420             return -1;
00421         if (a > b)
00422             return 1;
00423         return 0;
00424     }
00425 #endif
00426     x = w2v(wx);
00427     y = w2v(wy);
00428     return rb_cmpint(rb_funcall(x, id_cmp, 1, y), x, y);
00429 }
00430 
00431 #define wne(x,y) (!weq((x),(y)))
00432 #define wlt(x,y) (wcmp((x),(y)) < 0)
00433 #define wgt(x,y) (wcmp((x),(y)) > 0)
00434 #define wle(x,y) (wcmp((x),(y)) <= 0)
00435 #define wge(x,y) (wcmp((x),(y)) >= 0)
00436 
00437 static wideval_t
00438 wadd(wideval_t wx, wideval_t wy)
00439 {
00440     VALUE x;
00441 #if WIDEVALUE_IS_WIDER
00442     if (FIXWV_P(wx) && FIXWV_P(wy)) {
00443         wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
00444         return WINT2WV(r);
00445     }
00446     else
00447 #endif
00448     x = w2v(wx);
00449     if (TYPE(x) == T_BIGNUM) return v2w(rb_big_plus(x, w2v(wy)));
00450     return v2w(rb_funcall(x, '+', 1, w2v(wy)));
00451 }
00452 
00453 static wideval_t
00454 wsub(wideval_t wx, wideval_t wy)
00455 {
00456     VALUE x;
00457 #if WIDEVALUE_IS_WIDER
00458     if (FIXWV_P(wx) && FIXWV_P(wy)) {
00459         wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
00460         return WINT2WV(r);
00461     }
00462     else
00463 #endif
00464     x = w2v(wx);
00465     if (TYPE(x) == T_BIGNUM) return v2w(rb_big_minus(x, w2v(wy)));
00466     return v2w(rb_funcall(x, '-', 1, w2v(wy)));
00467 }
00468 
00469 static int
00470 wi_mul(wideint_t x, wideint_t y, wideint_t *z)
00471 {
00472     uwideint_t a, b, c;
00473     int s;
00474     if (x == 0 || y == 0) {
00475         *z = 0;
00476         return 1;
00477     }
00478     if (x < 0) {
00479         s = -1;
00480         a = (uwideint_t)-x;
00481     }
00482     else {
00483         s = 1;
00484         a = (uwideint_t)x;
00485     }
00486     if (y < 0) {
00487         s = -s;
00488         b = (uwideint_t)-y;
00489     }
00490     else {
00491         b = (uwideint_t)y;
00492     }
00493     if (a <= UWIDEINT_MAX / b) {
00494         c = a * b;
00495         if (s < 0) {
00496             if (c <= (uwideint_t)WIDEINT_MAX + 1) {
00497                 *z = -(wideint_t)c;
00498                 return 1;
00499             }
00500         }
00501         else {
00502             if (c <= (uwideint_t)WIDEINT_MAX) {
00503                 *z = (wideint_t)c;
00504                 return 1;
00505             }
00506         }
00507     }
00508     return 0;
00509 }
00510 
00511 static wideval_t
00512 wmul(wideval_t wx, wideval_t wy)
00513 {
00514     VALUE x, z;
00515 #if WIDEVALUE_IS_WIDER
00516     if (FIXWV_P(wx) && FIXWV_P(wy)) {
00517         wideint_t z;
00518         if (wi_mul(FIXWV2WINT(wx), FIXWV2WINT(wy), &z))
00519             return WINT2WV(z);
00520     }
00521 #endif
00522     x = w2v(wx);
00523     if (TYPE(x) == T_BIGNUM) return v2w(rb_big_mul(x, w2v(wy)));
00524     z = rb_funcall(x, '*', 1, w2v(wy));
00525     if (TYPE(z) == T_RATIONAL && RRATIONAL(z)->den == INT2FIX(1)) {
00526         z = RRATIONAL(z)->num;
00527     }
00528     return v2w(z);
00529 }
00530 
00531 static wideval_t
00532 wquo(wideval_t wx, wideval_t wy)
00533 {
00534     VALUE x, y, ret;
00535 #if WIDEVALUE_IS_WIDER
00536     if (FIXWV_P(wx) && FIXWV_P(wy)) {
00537         wideint_t a, b, c;
00538         a = FIXWV2WINT(wx);
00539         b = FIXWV2WINT(wy);
00540         if (b == 0) rb_num_zerodiv();
00541         c = a / b;
00542         if (c * b == a) {
00543             return WINT2WV(c);
00544         }
00545     }
00546 #endif
00547     x = w2v(wx);
00548     y = w2v(wy);
00549     ret = rb_funcall(x, id_quo, 1, y);
00550     if (TYPE(ret) == T_RATIONAL &&
00551         RRATIONAL(ret)->den == INT2FIX(1)) {
00552         ret = RRATIONAL(ret)->num;
00553     }
00554     return v2w(ret);
00555 }
00556 
00557 #define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
00558 #define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
00559 
00560 static void
00561 wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
00562 {
00563     VALUE tmp, ary;
00564 #if WIDEVALUE_IS_WIDER
00565     if (FIXWV_P(wn) && FIXWV_P(wd)) {
00566         wideint_t n, d, q, r;
00567         d = FIXWV2WINT(wd);
00568         if (d == 0) rb_num_zerodiv();
00569         if (d == 1) {
00570             *wq = wn;
00571             *wr = WINT2FIXWV(0);
00572             return;
00573         }
00574         if (d == -1) {
00575             wideint_t xneg = -FIXWV2WINT(wn);
00576             *wq = WINT2WV(xneg);
00577             *wr = WINT2FIXWV(0);
00578             return;
00579         }
00580         n = FIXWV2WINT(wn);
00581         if (n == 0) {
00582             *wq = WINT2FIXWV(0);
00583             *wr = WINT2FIXWV(0);
00584             return;
00585         }
00586         if (d < 0) {
00587             if (n < 0) {
00588                 q = ((-n) / (-d));
00589                 r = ((-n) % (-d));
00590                 if (r != 0) {
00591                     q -= 1;
00592                     r += d;
00593                 }
00594             }
00595             else { /* 0 < n */
00596                 q = -(n / (-d));
00597                 r = -(n % (-d));
00598             }
00599         }
00600         else { /* 0 < d */
00601             if (n < 0) {
00602                 q = -((-n) / d);
00603                 r = -((-n) % d);
00604                 if (r != 0) {
00605                     q -= 1;
00606                     r += d;
00607                 }
00608             }
00609             else { /* 0 < n */
00610                 q = n / d;
00611                 r = n % d;
00612             }
00613         }
00614         *wq = WINT2FIXWV(q);
00615         *wr = WINT2FIXWV(r);
00616         return;
00617     }
00618 #endif
00619     tmp = rb_funcall(w2v(wn), id_divmod, 1, w2v(wd));
00620     ary = rb_check_array_type(tmp);
00621     if (NIL_P(ary)) {
00622         rb_raise(rb_eTypeError, "unexpected divmod result: into %s",
00623                  rb_obj_classname(tmp));
00624     }
00625     *wq = v2w(rb_ary_entry(ary, 0));
00626     *wr = v2w(rb_ary_entry(ary, 1));
00627 }
00628 
00629 static void
00630 wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
00631 {
00632     if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
00633         *wq = wx;
00634         *wr = WINT2FIXWV(0);
00635         return;
00636     }
00637     wdivmod(wmul(wx,wy), wz, wq, wr);
00638 }
00639 
00640 static wideval_t
00641 wdiv(wideval_t wx, wideval_t wy)
00642 {
00643     wideval_t q, r;
00644     wdivmod(wx, wy, &q, &r);
00645     return q;
00646 }
00647 
00648 static wideval_t
00649 wmod(wideval_t wx, wideval_t wy)
00650 {
00651     wideval_t q, r;
00652     wdivmod(wx, wy, &q, &r);
00653     return r;
00654 }
00655 
00656 static VALUE
00657 num_exact(VALUE v)
00658 {
00659     VALUE tmp;
00660     int t;
00661 
00662     t = TYPE(v);
00663     switch (t) {
00664       case T_FIXNUM:
00665       case T_BIGNUM:
00666         return v;
00667 
00668       case T_RATIONAL:
00669         break;
00670 
00671       case T_STRING:
00672       case T_NIL:
00673         goto typeerror;
00674 
00675       default:
00676         if ((tmp = rb_check_funcall(v, rb_intern("to_r"), 0, NULL)) != Qundef) {
00677             if (rb_respond_to(v, rb_intern("to_str"))) goto typeerror;
00678             v = tmp;
00679             break;
00680         }
00681         if (!NIL_P(tmp = rb_check_to_integer(v, "to_int"))) {
00682             v = tmp;
00683             break;
00684         }
00685         goto typeerror;
00686     }
00687 
00688     t = TYPE(v);
00689     switch (t) {
00690       case T_FIXNUM:
00691       case T_BIGNUM:
00692         return v;
00693 
00694       case T_RATIONAL:
00695         if (RRATIONAL(v)->den == INT2FIX(1))
00696             v = RRATIONAL(v)->num;
00697         break;
00698 
00699       default:
00700       typeerror:
00701         rb_raise(rb_eTypeError, "can't convert %s into an exact number",
00702                                 NIL_P(v) ? "nil" : rb_obj_classname(v));
00703     }
00704     return v;
00705 }
00706 
00707 /* time_t */
00708 
00709 #ifndef TYPEOF_TIMEVAL_TV_SEC
00710 # define TYPEOF_TIMEVAL_TV_SEC time_t
00711 #endif
00712 #ifndef TYPEOF_TIMEVAL_TV_USEC
00713 # if INT_MAX >= 1000000
00714 # define TYPEOF_TIMEVAL_TV_USEC int
00715 # else
00716 # define TYPEOF_TIMEVAL_TV_USEC long
00717 # endif
00718 #endif
00719 
00720 #if SIZEOF_TIME_T == SIZEOF_LONG
00721 typedef unsigned long unsigned_time_t;
00722 #elif SIZEOF_TIME_T == SIZEOF_INT
00723 typedef unsigned int unsigned_time_t;
00724 #elif SIZEOF_TIME_T == SIZEOF_LONG_LONG
00725 typedef unsigned LONG_LONG unsigned_time_t;
00726 #else
00727 # error cannot find integer type which size is same as time_t.
00728 #endif
00729 
00730 #define TIMET_MAX (~(time_t)0 <= 0 ? (time_t)((~(unsigned_time_t)0) >> 1) : (time_t)(~(unsigned_time_t)0))
00731 #define TIMET_MIN (~(time_t)0 <= 0 ? (time_t)(((unsigned_time_t)1) << (sizeof(time_t) * CHAR_BIT - 1)) : (time_t)0)
00732 
00733 static wideval_t
00734 rb_time_magnify(wideval_t w)
00735 {
00736     if (FIXWV_P(w)) {
00737         wideint_t z;
00738         if (wi_mul(FIXWV2WINT(w), TIME_SCALE, &z))
00739             return WINT2WV(z);
00740     }
00741     return wmul(w, WINT2FIXWV(TIME_SCALE));
00742 }
00743 
00744 static wideval_t
00745 rb_time_unmagnify(wideval_t w)
00746 {
00747 #if WIDEVALUE_IS_WIDER
00748     if (FIXWV_P(w)) {
00749         wideint_t a, b, c;
00750         a = FIXWV2WINT(w);
00751         b = TIME_SCALE;
00752         c = a / b;
00753         if (c * b == a) {
00754             return WINT2FIXWV(c);
00755         }
00756     }
00757 #endif
00758     return wquo(w, WINT2FIXWV(TIME_SCALE));
00759 }
00760 
00761 static VALUE
00762 rb_time_unmagnify_to_float(wideval_t w)
00763 {
00764     VALUE v;
00765 #if WIDEVALUE_IS_WIDER
00766     if (FIXWV_P(w)) {
00767         wideint_t a, b, c;
00768         a = FIXWV2WINT(w);
00769         b = TIME_SCALE;
00770         c = a / b;
00771         if (c * b == a) {
00772             return DBL2NUM((double)c);
00773         }
00774         v = DBL2NUM((double)FIXWV2WINT(w));
00775         return quo(v, DBL2NUM(TIME_SCALE));
00776     }
00777 #endif
00778     v = w2v(w);
00779     return quo(v, DBL2NUM(TIME_SCALE));
00780 }
00781 
00782 static void
00783 split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
00784 {
00785     wideval_t q, r;
00786     wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
00787     *timew_p = q;
00788     *subsecx_p = w2v(r);
00789 }
00790 
00791 static wideval_t
00792 timet2wv(time_t t)
00793 {
00794 #if WIDEVALUE_IS_WIDER
00795     if (TIMET_MIN == 0) {
00796         uwideint_t wi = (uwideint_t)t;
00797         if (wi <= FIXWV_MAX) {
00798             return WINT2FIXWV(wi);
00799         }
00800     }
00801     else {
00802         wideint_t wi = (wideint_t)t;
00803         if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
00804             return WINT2FIXWV(wi);
00805         }
00806     }
00807 #endif
00808     return v2w(TIMET2NUM(t));
00809 }
00810 #define TIMET2WV(t) timet2wv(t)
00811 
00812 static time_t
00813 wv2timet(wideval_t w)
00814 {
00815 #if WIDEVALUE_IS_WIDER
00816     if (FIXWV_P(w)) {
00817         wideint_t wi = FIXWV2WINT(w);
00818         if (TIMET_MIN == 0) {
00819             if (wi < 0)
00820                 rb_raise(rb_eRangeError, "negative value to convert into `time_t'");
00821             if (TIMET_MAX < (uwideint_t)wi)
00822                 rb_raise(rb_eRangeError, "too big to convert into `time_t'");
00823         }
00824         else {
00825             if (wi < TIMET_MIN || TIMET_MAX < wi)
00826                 rb_raise(rb_eRangeError, "too big to convert into `time_t'");
00827         }
00828         return (time_t)wi;
00829     }
00830 #endif
00831     return NUM2TIMET(w2v(w));
00832 }
00833 #define WV2TIMET(t) wv2timet(t)
00834 
00835 VALUE rb_cTime;
00836 static VALUE time_utc_offset _((VALUE));
00837 
00838 static int obj2int(VALUE obj);
00839 static VALUE obj2vint(VALUE obj);
00840 static int month_arg(VALUE arg);
00841 static void validate_utc_offset(VALUE utc_offset);
00842 static void validate_vtm(struct vtm *vtm);
00843 
00844 static VALUE time_gmtime(VALUE);
00845 static VALUE time_localtime(VALUE);
00846 static VALUE time_fixoff(VALUE);
00847 
00848 static time_t timegm_noleapsecond(struct tm *tm);
00849 static int tmcmp(struct tm *a, struct tm *b);
00850 static int vtmcmp(struct vtm *a, struct vtm *b);
00851 static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
00852 
00853 static struct vtm *localtimew(wideval_t timew, struct vtm *result);
00854 
00855 static int leap_year_p(long y);
00856 #define leap_year_v_p(y) leap_year_p(NUM2LONG(mod(v, INT2FIX(400))))
00857 
00858 #ifdef HAVE_GMTIME_R
00859 #define rb_gmtime_r(t, tm) gmtime_r(t, tm)
00860 #define rb_localtime_r(t, tm) localtime_r(t, tm)
00861 #else
00862 static inline struct tm *
00863 rb_gmtime_r(const time_t *tp, struct tm *result)
00864 {
00865     struct tm *t = gmtime(tp);
00866     if (t) *result = *t;
00867     return t;
00868 }
00869 
00870 static inline struct tm *
00871 rb_localtime_r(const time_t *tp, struct tm *result)
00872 {
00873     struct tm *t = localtime(tp);
00874     if (t) *result = *t;
00875     return t;
00876 }
00877 #endif
00878 
00879 static struct tm *
00880 rb_localtime_r2(const time_t *t, struct tm *result)
00881 {
00882 #if defined __APPLE__ && defined __LP64__
00883     if (*t != (time_t)(int)*t) return NULL;
00884 #endif
00885     result = rb_localtime_r(t, result);
00886 #if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
00887     if (result) {
00888         int gmtoff1 = 0;
00889         int gmtoff2 = 0;
00890         struct tm tmp = *result;
00891         time_t t2;
00892 #  if defined(HAVE_STRUCT_TM_TM_GMTOFF)
00893         gmtoff1 = result->tm_gmtoff;
00894 #  endif
00895         t2 = mktime(&tmp);
00896 #  if defined(HAVE_STRUCT_TM_TM_GMTOFF)
00897         gmtoff2 = tmp.tm_gmtoff;
00898 #  endif
00899         if (*t + gmtoff1 != t2 + gmtoff2)
00900             result = NULL;
00901     }
00902 #endif
00903     return result;
00904 }
00905 #define LOCALTIME(tm, result) (tzset(),rb_localtime_r2((tm), &(result)))
00906 
00907 #if !defined(HAVE_STRUCT_TM_TM_GMTOFF)
00908     static struct tm *
00909     rb_gmtime_r2(const time_t *t, struct tm *result)
00910     {
00911         result = rb_gmtime_r(t, result);
00912 #if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
00913         if (result) {
00914             struct tm tmp = *result;
00915             time_t t2 = timegm(&tmp);
00916             if (*t != t2)
00917                 result = NULL;
00918         }
00919 #endif
00920         return result;
00921     }
00922 #   define GMTIME(tm, result) rb_gmtime_r2((tm), &(result))
00923 #endif
00924 
00925 static const int common_year_yday_offset[] = {
00926     -1,
00927     -1 + 31,
00928     -1 + 31 + 28,
00929     -1 + 31 + 28 + 31,
00930     -1 + 31 + 28 + 31 + 30,
00931     -1 + 31 + 28 + 31 + 30 + 31,
00932     -1 + 31 + 28 + 31 + 30 + 31 + 30,
00933     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
00934     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
00935     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
00936     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
00937     -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
00938       /* 1    2    3    4    5    6    7    8    9    10   11 */
00939 };
00940 static const int leap_year_yday_offset[] = {
00941     -1,
00942     -1 + 31,
00943     -1 + 31 + 29,
00944     -1 + 31 + 29 + 31,
00945     -1 + 31 + 29 + 31 + 30,
00946     -1 + 31 + 29 + 31 + 30 + 31,
00947     -1 + 31 + 29 + 31 + 30 + 31 + 30,
00948     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
00949     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
00950     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
00951     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
00952     -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
00953       /* 1    2    3    4    5    6    7    8    9    10   11 */
00954 };
00955 
00956 static const int common_year_days_in_month[] = {
00957     31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
00958 };
00959 static const int leap_year_days_in_month[] = {
00960     31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
00961 };
00962 
00963 static int
00964 calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
00965 {
00966     int tm_year_mod400;
00967     int tm_yday = tm_mday;
00968 
00969     tm_year_mod400 = MOD(tm_year, 400);
00970 
00971     if (leap_year_p(tm_year_mod400 + 1900))
00972         tm_yday += leap_year_yday_offset[tm_mon];
00973     else
00974         tm_yday += common_year_yday_offset[tm_mon];
00975 
00976     return tm_yday;
00977 }
00978 
00979 static wideval_t
00980 timegmw_noleapsecond(struct vtm *vtm)
00981 {
00982     VALUE year1900;
00983     VALUE q400, r400;
00984     int year_mod400;
00985     int yday;
00986     long days_in400;
00987     VALUE vdays, ret;
00988     wideval_t wret;
00989 
00990     year1900 = sub(vtm->year, INT2FIX(1900));
00991 
00992     divmodv(year1900, INT2FIX(400), &q400, &r400);
00993     year_mod400 = NUM2INT(r400);
00994 
00995     yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
00996 
00997     /*
00998      *  `Seconds Since the Epoch' in SUSv3:
00999      *  tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
01000      *  (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
01001      *  ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
01002      */
01003     ret = LONG2NUM(vtm->sec
01004                  + vtm->min*60
01005                  + vtm->hour*3600);
01006     days_in400 = yday
01007                - 70*365
01008                + DIV(year_mod400 - 69, 4)
01009                - DIV(year_mod400 - 1, 100)
01010                + (year_mod400 + 299) / 400;
01011     vdays = LONG2NUM(days_in400);
01012     vdays = add(vdays, mul(q400, INT2FIX(97)));
01013     vdays = add(vdays, mul(year1900, INT2FIX(365)));
01014     wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
01015     wret = wadd(wret, v2w(vtm->subsecx));
01016 
01017     return wret;
01018 }
01019 
01020 static st_table *zone_table;
01021 
01022 static const char *
01023 zone_str(const char *s)
01024 {
01025     st_data_t k, v;
01026 
01027     if (!zone_table)
01028         zone_table = st_init_strtable();
01029 
01030     k = (st_data_t)s;
01031     if (st_lookup(zone_table, k, &v)) {
01032         return (const char *)v;
01033     }
01034     s = strdup(s);
01035     k = (st_data_t)s;
01036     st_add_direct(zone_table, k, k);
01037 
01038     return s;
01039 }
01040 
01041 static void
01042 gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
01043 {
01044     VALUE v;
01045     int i, n, x, y;
01046     const int *yday_offset;
01047     int wday;
01048     VALUE timev;
01049     wideval_t timew2, w, w2;
01050 
01051     vtm->isdst = 0;
01052 
01053     split_second(timew, &timew2, &vtm->subsecx);
01054 
01055     wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
01056     timev = w2v(w2);
01057     v = w2v(w);
01058 
01059     wday = NUM2INT(mod(timev, INT2FIX(7)));
01060     vtm->wday = (wday + 4) % 7;
01061 
01062     n = NUM2INT(v);
01063     vtm->sec = n % 60; n = n / 60;
01064     vtm->min = n % 60; n = n / 60;
01065     vtm->hour = n;
01066 
01067     /* 97 leap days in the 400 year cycle */
01068     divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
01069     vtm->year = mul(timev, INT2FIX(400));
01070 
01071     /* n is the days in the 400 year cycle.
01072      * the start of the cycle is 1970-01-01. */
01073 
01074     n = NUM2INT(v);
01075     y = 1970;
01076 
01077     /* 30 years including 7 leap days (1972, 1976, ... 1996),
01078      * 31 days in January 2000 and
01079      * 29 days in February 2000
01080      * from 1970-01-01 to 2000-02-29 */
01081     if (30*365+7+31+29-1 <= n) {
01082         /* 2000-02-29 or after */
01083         if (n < 31*365+8) {
01084             /* 2000-02-29 to 2000-12-31 */
01085             y += 30;
01086             n -= 30*365+7;
01087             goto found;
01088         }
01089         else {
01090             /* 2001-01-01 or after */
01091             n -= 1;
01092         }
01093     }
01094 
01095     x = n / (365*100 + 24);
01096     n = n % (365*100 + 24);
01097     y += x * 100;
01098     if (30*365+7+31+29-1 <= n) {
01099         if (n < 31*365+7) {
01100             y += 30;
01101             n -= 30*365+7;
01102             goto found;
01103         }
01104         else
01105             n += 1;
01106     }
01107 
01108     x = n / (365*4 + 1);
01109     n = n % (365*4 + 1);
01110     y += x * 4;
01111     if (365*2+31+29-1 <= n) {
01112         if (n < 365*2+366) {
01113             y += 2;
01114             n -= 365*2;
01115             goto found;
01116         }
01117         else
01118             n -= 1;
01119     }
01120 
01121     x = n / 365;
01122     n = n % 365;
01123     y += x;
01124 
01125   found:
01126     vtm->yday = n+1;
01127     vtm->year = add(vtm->year, INT2NUM(y));
01128 
01129     if (leap_year_p(y))
01130         yday_offset = leap_year_yday_offset;
01131     else
01132         yday_offset = common_year_yday_offset;
01133 
01134     for (i = 0; i < 12; i++) {
01135         if (yday_offset[i] < n) {
01136             vtm->mon = i+1;
01137             vtm->mday = n - yday_offset[i];
01138         }
01139         else
01140             break;
01141     }
01142 
01143     vtm->utc_offset = INT2FIX(0);
01144     vtm->zone = "UTC";
01145 }
01146 
01147 static struct tm *
01148 gmtime_with_leapsecond(const time_t *timep, struct tm *result)
01149 {
01150 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
01151     /* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
01152     struct tm *t;
01153     int sign;
01154     int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
01155     long gmtoff;
01156     t = LOCALTIME(timep, *result);
01157     if (t == NULL)
01158         return NULL;
01159 
01160     /* subtract gmtoff */
01161     if (t->tm_gmtoff < 0) {
01162         sign = 1;
01163         gmtoff = -t->tm_gmtoff;
01164     }
01165     else {
01166         sign = -1;
01167         gmtoff = t->tm_gmtoff;
01168     }
01169     gmtoff_sec = (int)(gmtoff % 60);
01170     gmtoff = gmtoff / 60;
01171     gmtoff_min = (int)(gmtoff % 60);
01172     gmtoff = gmtoff / 60;
01173     gmtoff_hour = (int)gmtoff;  /* <= 12 */
01174 
01175     gmtoff_sec *= sign;
01176     gmtoff_min *= sign;
01177     gmtoff_hour *= sign;
01178 
01179     gmtoff_day = 0;
01180 
01181     if (gmtoff_sec) {
01182         /* If gmtoff_sec == 0, don't change result->tm_sec.
01183          * It may be 60 which is a leap second. */
01184         result->tm_sec += gmtoff_sec;
01185         if (result->tm_sec < 0) {
01186             result->tm_sec += 60;
01187             gmtoff_min -= 1;
01188         }
01189         if (60 <= result->tm_sec) {
01190             result->tm_sec -= 60;
01191             gmtoff_min += 1;
01192         }
01193     }
01194     if (gmtoff_min) {
01195         result->tm_min += gmtoff_min;
01196         if (result->tm_min < 0) {
01197             result->tm_min += 60;
01198             gmtoff_hour -= 1;
01199         }
01200         if (60 <= result->tm_min) {
01201             result->tm_min -= 60;
01202             gmtoff_hour += 1;
01203         }
01204     }
01205     if (gmtoff_hour) {
01206         result->tm_hour += gmtoff_hour;
01207         if (result->tm_hour < 0) {
01208             result->tm_hour += 24;
01209             gmtoff_day = -1;
01210         }
01211         if (24 <= result->tm_hour) {
01212             result->tm_hour -= 24;
01213             gmtoff_day = 1;
01214         }
01215     }
01216 
01217     if (gmtoff_day) {
01218         if (gmtoff_day < 0) {
01219             if (result->tm_yday == 0) {
01220                 result->tm_mday = 31;
01221                 result->tm_mon = 11; /* December */
01222                 result->tm_year--;
01223                 result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
01224             }
01225             else if (result->tm_mday == 1) {
01226                 const int *days_in_month = leap_year_p(result->tm_year + 1900) ?
01227                                            leap_year_days_in_month :
01228                                            common_year_days_in_month;
01229                 result->tm_mon--;
01230                 result->tm_mday = days_in_month[result->tm_mon];
01231                 result->tm_yday--;
01232             }
01233             else {
01234                 result->tm_mday--;
01235                 result->tm_yday--;
01236             }
01237             result->tm_wday = (result->tm_wday + 6) % 7;
01238         }
01239         else {
01240             int leap = leap_year_p(result->tm_year + 1900);
01241             if (result->tm_yday == (leap ? 365 : 364)) {
01242                 result->tm_year++;
01243                 result->tm_mon = 0; /* January */
01244                 result->tm_mday = 1;
01245                 result->tm_yday = 0;
01246             }
01247             else if (result->tm_mday == (leap ? leap_year_days_in_month :
01248                                                 common_year_days_in_month)[result->tm_mon]) {
01249                 result->tm_mon++;
01250                 result->tm_mday = 1;
01251                 result->tm_yday++;
01252             }
01253             else {
01254                 result->tm_mday++;
01255                 result->tm_yday++;
01256             }
01257             result->tm_wday = (result->tm_wday + 1) % 7;
01258         }
01259     }
01260     result->tm_isdst = 0;
01261     result->tm_gmtoff = 0;
01262 #if defined(HAVE_TM_ZONE)
01263     result->tm_zone = (char *)"UTC";
01264 #endif
01265     return result;
01266 #else
01267     return GMTIME(timep, *result);
01268 #endif
01269 }
01270 
01271 static long this_year = 0;
01272 static time_t known_leap_seconds_limit;
01273 static int number_of_leap_seconds_known;
01274 
01275 static void
01276 init_leap_second_info()
01277 {
01278     /*
01279      * leap seconds are determined by IERS.
01280      * It is announced 6 months before the leap second.
01281      * So no one knows leap seconds in the future after the next year.
01282      */
01283     if (this_year == 0) {
01284         time_t now;
01285         struct tm *tm, result;
01286         struct vtm vtm;
01287         wideval_t timew;
01288         now = time(NULL);
01289         gmtime(&now);
01290         tm = gmtime_with_leapsecond(&now, &result);
01291         if (!tm) return;
01292         this_year = tm->tm_year;
01293 
01294         if (TIMET_MAX - now < (time_t)(366*86400))
01295             known_leap_seconds_limit = TIMET_MAX;
01296         else
01297             known_leap_seconds_limit = now + (time_t)(366*86400);
01298 
01299         if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
01300             return;
01301 
01302         vtm.year = LONG2NUM(result.tm_year + 1900);
01303         vtm.mon = result.tm_mon + 1;
01304         vtm.mday = result.tm_mday;
01305         vtm.hour = result.tm_hour;
01306         vtm.min = result.tm_min;
01307         vtm.sec = result.tm_sec;
01308         vtm.subsecx = INT2FIX(0);
01309         vtm.utc_offset = INT2FIX(0);
01310 
01311         timew = timegmw_noleapsecond(&vtm);
01312 
01313         number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
01314     }
01315 }
01316 
01317 static wideval_t
01318 timegmw(struct vtm *vtm)
01319 {
01320     wideval_t timew;
01321     struct tm tm;
01322     time_t t;
01323     const char *errmsg;
01324 
01325     /* The first leap second is 1972-06-30 23:59:60 UTC.
01326      * No leap seconds before. */
01327     if (gt(INT2FIX(1972), vtm->year))
01328         return timegmw_noleapsecond(vtm);
01329 
01330     init_leap_second_info();
01331 
01332     timew = timegmw_noleapsecond(vtm);
01333 
01334     if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
01335         return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
01336     }
01337 
01338     tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
01339     tm.tm_mon = vtm->mon - 1;
01340     tm.tm_mday = vtm->mday;
01341     tm.tm_hour = vtm->hour;
01342     tm.tm_min = vtm->min;
01343     tm.tm_sec = vtm->sec;
01344     tm.tm_isdst = 0;
01345 
01346     errmsg = find_time_t(&tm, 1, &t);
01347     if (errmsg)
01348         rb_raise(rb_eArgError, "%s", errmsg);
01349     return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
01350 }
01351 
01352 static struct vtm *
01353 gmtimew(wideval_t timew, struct vtm *result)
01354 {
01355     time_t t;
01356     struct tm tm;
01357     VALUE subsecx;
01358     wideval_t timew2;
01359 
01360     if (wlt(timew, WINT2FIXWV(0))) {
01361         gmtimew_noleapsecond(timew, result);
01362         return result;
01363     }
01364 
01365     init_leap_second_info();
01366 
01367     if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
01368         timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
01369         gmtimew_noleapsecond(timew, result);
01370         return result;
01371     }
01372 
01373     split_second(timew, &timew2, &subsecx);
01374 
01375     t = WV2TIMET(timew2);
01376     if (!gmtime_with_leapsecond(&t, &tm))
01377         return NULL;
01378 
01379     result->year = LONG2NUM((long)tm.tm_year + 1900);
01380     result->mon = tm.tm_mon + 1;
01381     result->mday = tm.tm_mday;
01382     result->hour = tm.tm_hour;
01383     result->min = tm.tm_min;
01384     result->sec = tm.tm_sec;
01385     result->subsecx = subsecx;
01386     result->utc_offset = INT2FIX(0);
01387     result->wday = tm.tm_wday;
01388     result->yday = tm.tm_yday+1;
01389     result->isdst = tm.tm_isdst;
01390     result->zone = "UTC";
01391 
01392     return result;
01393 }
01394 
01395 static struct tm *localtime_with_gmtoff(const time_t *t, struct tm *result, long *gmtoff);
01396 
01397 /*
01398  * The idea is come from Perl:
01399  * http://use.perl.org/articles/08/02/07/197204.shtml
01400  *
01401  * compat_common_month_table is generated by following program.
01402  * This table finds the last month which start the same day of a week.
01403  * The year 2037 is not used because
01404  * http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
01405  *
01406  *  #!/usr/bin/ruby
01407  *
01408  *  require 'date'
01409  *
01410  *  h = {}
01411  *  2036.downto(2010) {|y|
01412  *    1.upto(12) {|m|
01413  *      next if m == 2 && y % 4 == 0
01414  *      d = Date.new(y,m,1)
01415  *      h[m] ||= {}
01416  *      h[m][d.wday] ||= y
01417  *    }
01418  *  }
01419  *
01420  *  1.upto(12) {|m|
01421  *    print "{"
01422  *    0.upto(6) {|w|
01423  *      y = h[m][w]
01424  *      print " #{y},"
01425  *    }
01426  *    puts "},"
01427  *  }
01428  *
01429  */
01430 static int compat_common_month_table[12][7] = {
01431   /* Sun   Mon   Tue   Wed   Thu   Fri   Sat */
01432   { 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
01433   { 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
01434   { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
01435   { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
01436   { 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
01437   { 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
01438   { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
01439   { 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
01440   { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
01441   { 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
01442   { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
01443   { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
01444 };
01445 
01446 /*
01447  * compat_leap_month_table is generated by following program.
01448  *
01449  *  #!/usr/bin/ruby
01450  *
01451  *  require 'date'
01452  *
01453  *  h = {}
01454  *  2037.downto(2010) {|y|
01455  *    1.upto(12) {|m|
01456  *      next unless m == 2 && y % 4 == 0
01457  *      d = Date.new(y,m,1)
01458  *      h[m] ||= {}
01459  *      h[m][d.wday] ||= y
01460  *    }
01461  *  }
01462  *
01463  *  2.upto(2) {|m|
01464  *    0.upto(6) {|w|
01465  *      y = h[m][w]
01466  *      print " #{y},"
01467  *    }
01468  *    puts
01469  *  }
01470  */
01471 static int compat_leap_month_table[7] = {
01472 /* Sun   Mon   Tue   Wed   Thu   Fri   Sat */
01473   2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
01474 };
01475 
01476 static int
01477 calc_wday(int year, int month, int day)
01478 {
01479     int a, y, m;
01480     int wday;
01481 
01482     a = (14 - month) / 12;
01483     y = year + 4800 - a;
01484     m = month + 12 * a - 3;
01485     wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
01486     wday = wday % 7;
01487     return wday;
01488 }
01489 
01490 static VALUE
01491 guess_local_offset(struct vtm *vtm_utc)
01492 {
01493     VALUE off = INT2FIX(0);
01494     struct tm tm;
01495     long gmtoff;
01496     time_t t;
01497     struct vtm vtm2;
01498     VALUE timev;
01499     int y, wday;
01500 
01501 # if defined(NEGATIVE_TIME_T)
01502     /* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
01503     if (localtime_with_gmtoff((t = (time_t)0x80000000, &t), &tm, &gmtoff))
01504         off = LONG2FIX(gmtoff);
01505     else
01506 # endif
01507     /* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
01508     if (localtime_with_gmtoff((t = 0, &t), &tm, &gmtoff))
01509         off = LONG2FIX(gmtoff);
01510 
01511     /* The first DST is at 1916 in German.
01512      * So we don't need to care DST before that. */
01513     if (lt(vtm_utc->year, INT2FIX(1916)))
01514         return off;
01515 
01516     /* It is difficult to guess future. */
01517 
01518     vtm2 = *vtm_utc;
01519 
01520     /* guess using a year before 2038. */
01521     y = NUM2INT(mod(vtm_utc->year, INT2FIX(400)));
01522     wday = calc_wday(y, vtm_utc->mon, 1);
01523     if (vtm_utc->mon == 2 && leap_year_p(y))
01524         vtm2.year = INT2FIX(compat_leap_month_table[wday]);
01525     else
01526         vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
01527 
01528     timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
01529     t = NUM2TIMET(timev);
01530     if (localtime_with_gmtoff(&t, &tm, &gmtoff))
01531         return LONG2FIX(gmtoff);
01532 
01533     {
01534         /* Use the current time offset as a last resort. */
01535         static time_t now = 0;
01536         static long now_gmtoff = 0;
01537         if (now == 0) {
01538             now = time(NULL);
01539             localtime_with_gmtoff(&now, &tm, &now_gmtoff);
01540         }
01541         return LONG2FIX(now_gmtoff);
01542     }
01543 }
01544 
01545 static VALUE
01546 small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
01547 {
01548     int off;
01549 
01550     off = vtm1->sec - vtm2->sec;
01551     off += (vtm1->min - vtm2->min) * 60;
01552     off += (vtm1->hour - vtm2->hour) * 3600;
01553     if (ne(vtm1->year, vtm2->year))
01554         off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
01555     else if (vtm1->mon != vtm2->mon)
01556         off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
01557     else if (vtm1->mday != vtm2->mday)
01558         off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
01559 
01560     return INT2FIX(off);
01561 }
01562 
01563 static wideval_t
01564 timelocalw(struct vtm *vtm)
01565 {
01566     time_t t;
01567     struct tm tm;
01568     VALUE v;
01569     wideval_t timew1, timew2;
01570     struct vtm vtm1, vtm2;
01571     int n;
01572 
01573     if (FIXNUM_P(vtm->year)) {
01574         long l = FIX2LONG(vtm->year) - 1900;
01575         if (l < INT_MIN || INT_MAX < l)
01576             goto no_localtime;
01577         tm.tm_year = (int)l;
01578     }
01579     else {
01580         v = sub(vtm->year, INT2FIX(1900));
01581         if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
01582             goto no_localtime;
01583         tm.tm_year = NUM2INT(v);
01584     }
01585 
01586     tm.tm_mon = vtm->mon-1;
01587     tm.tm_mday = vtm->mday;
01588     tm.tm_hour = vtm->hour;
01589     tm.tm_min = vtm->min;
01590     tm.tm_sec = vtm->sec;
01591     tm.tm_isdst = vtm->isdst;
01592 
01593     if (find_time_t(&tm, 0, &t))
01594         goto no_localtime;
01595     return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
01596 
01597   no_localtime:
01598     timew1 = timegmw(vtm);
01599 
01600     if (!localtimew(timew1, &vtm1))
01601         rb_raise(rb_eArgError, "localtimew error");
01602 
01603     n = vtmcmp(vtm, &vtm1);
01604     if (n == 0) {
01605         timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
01606         if (!localtimew(timew1, &vtm1))
01607             rb_raise(rb_eArgError, "localtimew error");
01608         n = 1;
01609     }
01610 
01611     if (n < 0) {
01612         timew2 = timew1;
01613         vtm2 = vtm1;
01614         timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
01615         if (!localtimew(timew1, &vtm1))
01616             rb_raise(rb_eArgError, "localtimew error");
01617     }
01618     else {
01619         timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
01620         if (!localtimew(timew2, &vtm2))
01621             rb_raise(rb_eArgError, "localtimew error");
01622     }
01623     timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
01624     timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
01625 
01626     if (weq(timew1, timew2))
01627         return timew1;
01628 
01629     if (!localtimew(timew1, &vtm1))
01630         rb_raise(rb_eArgError, "localtimew error");
01631     if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
01632         return timew2;
01633 
01634     if (!localtimew(timew2, &vtm2))
01635         rb_raise(rb_eArgError, "localtimew error");
01636     if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
01637         return timew1;
01638 
01639     if (vtm->isdst)
01640         return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
01641     else
01642         return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
01643 }
01644 
01645 static struct tm *
01646 localtime_with_gmtoff(const time_t *t, struct tm *result, long *gmtoff)
01647 {
01648     struct tm tm;
01649 
01650     if (LOCALTIME(t, tm)) {
01651 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
01652         *gmtoff = tm.tm_gmtoff;
01653 #else
01654         struct tm *u, *l;
01655         long off;
01656         struct tm tmbuf;
01657         l = &tm;
01658         u = GMTIME(t, tmbuf);
01659         if (!u)
01660             return NULL;
01661         if (l->tm_year != u->tm_year)
01662             off = l->tm_year < u->tm_year ? -1 : 1;
01663         else if (l->tm_mon != u->tm_mon)
01664             off = l->tm_mon < u->tm_mon ? -1 : 1;
01665         else if (l->tm_mday != u->tm_mday)
01666             off = l->tm_mday < u->tm_mday ? -1 : 1;
01667         else
01668             off = 0;
01669         off = off * 24 + l->tm_hour - u->tm_hour;
01670         off = off * 60 + l->tm_min - u->tm_min;
01671         off = off * 60 + l->tm_sec - u->tm_sec;
01672         *gmtoff = off;
01673 #endif
01674         *result = tm;
01675         return result;
01676     }
01677     return NULL;
01678 }
01679 
01680 static int
01681 timew_out_of_timet_range(wideval_t timew)
01682 {
01683     VALUE timexv;
01684 #if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
01685     if (FIXWV_P(timew)) {
01686         wideint_t t = FIXWV2WINT(timew);
01687         if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
01688             TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
01689             return 1;
01690         return 0;
01691     }
01692 #endif
01693     timexv = w2v(timew);
01694     if (lt(timexv, mul(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
01695         le(mul(INT2FIX(TIME_SCALE), add(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
01696         return 1;
01697     return 0;
01698 }
01699 
01700 static struct vtm *
01701 localtimew(wideval_t timew, struct vtm *result)
01702 {
01703     VALUE subsecx, offset;
01704 
01705     if (!timew_out_of_timet_range(timew)) {
01706         time_t t;
01707         struct tm tm;
01708         long gmtoff;
01709         wideval_t timew2;
01710 
01711         split_second(timew, &timew2, &subsecx);
01712 
01713         t = WV2TIMET(timew2);
01714 
01715         if (localtime_with_gmtoff(&t, &tm, &gmtoff)) {
01716             result->year = LONG2NUM((long)tm.tm_year + 1900);
01717             result->mon = tm.tm_mon + 1;
01718             result->mday = tm.tm_mday;
01719             result->hour = tm.tm_hour;
01720             result->min = tm.tm_min;
01721             result->sec = tm.tm_sec;
01722             result->subsecx = subsecx;
01723             result->wday = tm.tm_wday;
01724             result->yday = tm.tm_yday+1;
01725             result->isdst = tm.tm_isdst;
01726             result->utc_offset = LONG2NUM(gmtoff);
01727 #if defined(HAVE_TM_ZONE)
01728             result->zone = zone_str(tm.tm_zone);
01729 #elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
01730             /* this needs tzset or localtime, instead of localtime_r */
01731             result->zone = zone_str(tzname[daylight && tm.tm_isdst]);
01732 #else
01733             {
01734                 char buf[64];
01735                 strftime(buf, sizeof(buf), "%Z", &tm);
01736                 result->zone = zone_str(buf);
01737             }
01738 #endif
01739 
01740             return result;
01741         }
01742     }
01743 
01744     if (!gmtimew(timew, result))
01745         return NULL;
01746 
01747     offset = guess_local_offset(result);
01748 
01749     if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
01750         return NULL;
01751 
01752     result->utc_offset = offset;
01753 
01754     return result;
01755 }
01756 
01757 struct time_object {
01758     wideval_t timew; /* time_t value * TIME_SCALE.  possibly Rational. */
01759     struct vtm vtm;
01760     int gmt;
01761     int tm_got;
01762 };
01763 
01764 #define GetTimeval(obj, tobj) \
01765     TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj)
01766 
01767 #define IsTimeval(obj) rb_typeddata_is_kind_of(obj, &time_data_type)
01768 
01769 #define TIME_UTC_P(tobj) ((tobj)->gmt == 1)
01770 #define TIME_SET_UTC(tobj) ((tobj)->gmt = 1)
01771 
01772 #define TIME_LOCALTIME_P(tobj) ((tobj)->gmt == 0)
01773 #define TIME_SET_LOCALTIME(tobj) ((tobj)->gmt = 0)
01774 
01775 #define TIME_FIXOFF_P(tobj) ((tobj)->gmt == 2)
01776 #define TIME_SET_FIXOFF(tobj, off) \
01777     ((tobj)->gmt = 2, \
01778      (tobj)->vtm.utc_offset = (off), \
01779      (tobj)->vtm.zone = NULL)
01780 
01781 #define TIME_COPY_GMT(tobj1, tobj2) ((tobj1)->gmt = (tobj2)->gmt)
01782 
01783 static VALUE time_get_tm(VALUE, struct time_object *);
01784 #define MAKE_TM(time, tobj) \
01785   do { \
01786     if ((tobj)->tm_got == 0) { \
01787         time_get_tm((time), (tobj)); \
01788     } \
01789   } while (0)
01790 
01791 static void
01792 time_mark(void *ptr)
01793 {
01794     struct time_object *tobj = ptr;
01795     if (!tobj) return;
01796     if (!FIXWV_P(tobj->timew))
01797         rb_gc_mark(w2v(tobj->timew));
01798     rb_gc_mark(tobj->vtm.year);
01799     rb_gc_mark(tobj->vtm.subsecx);
01800     rb_gc_mark(tobj->vtm.utc_offset);
01801 }
01802 
01803 static void
01804 time_free(void *tobj)
01805 {
01806     if (tobj) xfree(tobj);
01807 }
01808 
01809 static size_t
01810 time_memsize(const void *tobj)
01811 {
01812     return tobj ? sizeof(struct time_object) : 0;
01813 }
01814 
01815 static const rb_data_type_t time_data_type = {
01816     "time",
01817     time_mark, time_free, time_memsize,
01818 };
01819 
01820 static VALUE
01821 time_s_alloc(VALUE klass)
01822 {
01823     VALUE obj;
01824     struct time_object *tobj;
01825 
01826     obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
01827     tobj->tm_got=0;
01828     tobj->timew = WINT2FIXWV(0);
01829 
01830     return obj;
01831 }
01832 
01833 static void
01834 time_modify(VALUE time)
01835 {
01836     rb_check_frozen(time);
01837     if (!OBJ_UNTRUSTED(time) && rb_safe_level() >= 4)
01838         rb_raise(rb_eSecurityError, "Insecure: can't modify Time");
01839 }
01840 
01841 static wideval_t
01842 timespec2timew(struct timespec *ts)
01843 {
01844     wideval_t timew;
01845 
01846     timew = rb_time_magnify(TIMET2WV(ts->tv_sec));
01847     if (ts->tv_nsec)
01848         timew = wadd(timew, wmulquoll(WINT2WV(ts->tv_nsec), TIME_SCALE, 1000000000));
01849     return timew;
01850 }
01851 
01852 static struct timespec
01853 timew2timespec(wideval_t timew)
01854 {
01855     VALUE subsecx;
01856     struct timespec ts;
01857     wideval_t timew2;
01858 
01859     if (timew_out_of_timet_range(timew))
01860         rb_raise(rb_eArgError, "time out of system range");
01861     split_second(timew, &timew2, &subsecx);
01862     ts.tv_sec = WV2TIMET(timew2);
01863     ts.tv_nsec = NUM2LONG(mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
01864     return ts;
01865 }
01866 
01867 static struct timespec *
01868 timew2timespec_exact(wideval_t timew, struct timespec *ts)
01869 {
01870     VALUE subsecx;
01871     wideval_t timew2;
01872     VALUE nsecv;
01873 
01874     if (timew_out_of_timet_range(timew))
01875         return NULL;
01876     split_second(timew, &timew2, &subsecx);
01877     ts->tv_sec = WV2TIMET(timew2);
01878     nsecv = mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
01879     if (!FIXNUM_P(nsecv))
01880         return NULL;
01881     ts->tv_nsec = NUM2LONG(nsecv);
01882     return ts;
01883 }
01884 
01885 /*
01886  *  Document-method: now
01887  *
01888  *  Synonym for <code>Time.new</code>. Returns a +Time+ object
01889  *  initialized to the current system time.
01890  */
01891 
01892 static VALUE
01893 time_init_0(VALUE time)
01894 {
01895     struct time_object *tobj;
01896     struct timespec ts;
01897 
01898     time_modify(time);
01899     GetTimeval(time, tobj);
01900     tobj->tm_got=0;
01901     tobj->timew = WINT2FIXWV(0);
01902 #ifdef HAVE_CLOCK_GETTIME
01903     if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
01904         rb_sys_fail("clock_gettime");
01905     }
01906 #else
01907     {
01908         struct timeval tv;
01909         if (gettimeofday(&tv, 0) < 0) {
01910             rb_sys_fail("gettimeofday");
01911         }
01912         ts.tv_sec = tv.tv_sec;
01913         ts.tv_nsec = tv.tv_usec * 1000;
01914     }
01915 #endif
01916     tobj->timew = timespec2timew(&ts);
01917 
01918     return time;
01919 }
01920 
01921 static VALUE
01922 time_set_utc_offset(VALUE time, VALUE off)
01923 {
01924     struct time_object *tobj;
01925     off = num_exact(off);
01926 
01927     time_modify(time);
01928     GetTimeval(time, tobj);
01929 
01930     tobj->tm_got = 0;
01931     TIME_SET_FIXOFF(tobj, off);
01932 
01933     return time;
01934 }
01935 
01936 static void
01937 vtm_add_offset(struct vtm *vtm, VALUE off)
01938 {
01939     int sign;
01940     VALUE subsec, v;
01941     int sec, min, hour;
01942     int day;
01943 
01944     vtm->utc_offset = sub(vtm->utc_offset, off);
01945 
01946     if (lt(off, INT2FIX(0))) {
01947         sign = -1;
01948         off = neg(off);
01949     }
01950     else {
01951         sign = 1;
01952     }
01953     divmodv(off, INT2FIX(1), &off, &subsec);
01954     divmodv(off, INT2FIX(60), &off, &v);
01955     sec = NUM2INT(v);
01956     divmodv(off, INT2FIX(60), &off, &v);
01957     min = NUM2INT(v);
01958     divmodv(off, INT2FIX(24), &off, &v);
01959     hour = NUM2INT(v);
01960 
01961     if (sign < 0) {
01962         subsec = neg(subsec);
01963         sec = -sec;
01964         min = -min;
01965         hour = -hour;
01966     }
01967 
01968     day = 0;
01969 
01970     if (!rb_equal(subsec, INT2FIX(0))) {
01971         vtm->subsecx = add(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
01972         if (lt(vtm->subsecx, INT2FIX(0))) {
01973             vtm->subsecx = add(vtm->subsecx, INT2FIX(TIME_SCALE));
01974             sec -= 1;
01975         }
01976         if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
01977             vtm->subsecx = sub(vtm->subsecx, INT2FIX(TIME_SCALE));
01978             sec += 1;
01979         }
01980         goto not_zero_sec;
01981     }
01982     if (sec) {
01983       not_zero_sec:
01984         /* If sec + subsec == 0, don't change vtm->sec.
01985          * It may be 60 which is a leap second. */
01986         vtm->sec += sec;
01987         if (vtm->sec < 0) {
01988             vtm->sec += 60;
01989             min -= 1;
01990         }
01991         if (60 <= vtm->sec) {
01992             vtm->sec -= 60;
01993             min += 1;
01994         }
01995     }
01996     if (min) {
01997         vtm->min += min;
01998         if (vtm->min < 0) {
01999             vtm->min += 60;
02000             hour -= 1;
02001         }
02002         if (60 <= vtm->min) {
02003             vtm->min -= 60;
02004             hour += 1;
02005         }
02006     }
02007     if (hour) {
02008         vtm->hour += hour;
02009         if (vtm->hour < 0) {
02010             vtm->hour += 24;
02011             day = -1;
02012         }
02013         if (24 <= vtm->hour) {
02014             vtm->hour -= 24;
02015             day = 1;
02016         }
02017     }
02018 
02019     if (day) {
02020         if (day < 0) {
02021             if (vtm->mon == 1 && vtm->mday == 1) {
02022                 vtm->mday = 31;
02023                 vtm->mon = 12; /* December */
02024                 vtm->year = sub(vtm->year, INT2FIX(1));
02025                 vtm->yday = leap_year_v_p(vtm->year) ? 365 : 364;
02026             }
02027             else if (vtm->mday == 1) {
02028                 const int *days_in_month = leap_year_v_p(vtm->year) ?
02029                                            leap_year_days_in_month :
02030                                            common_year_days_in_month;
02031                 vtm->mon--;
02032                 vtm->mday = days_in_month[vtm->mon-1];
02033                 vtm->yday--;
02034             }
02035             else {
02036                 vtm->mday--;
02037                 vtm->yday--;
02038             }
02039             vtm->wday = (vtm->wday + 6) % 7;
02040         }
02041         else {
02042             int leap = leap_year_v_p(vtm->year);
02043             if (vtm->mon == 12 && vtm->mday == 31) {
02044                 vtm->year = add(vtm->year, INT2FIX(1));
02045                 vtm->mon = 1; /* January */
02046                 vtm->mday = 1;
02047                 vtm->yday = 1;
02048             }
02049             else if (vtm->mday == (leap ? leap_year_days_in_month :
02050                                           common_year_days_in_month)[vtm->mon-1]) {
02051                 vtm->mon++;
02052                 vtm->mday = 1;
02053                 vtm->yday++;
02054             }
02055             else {
02056                 vtm->mday++;
02057                 vtm->yday++;
02058             }
02059             vtm->wday = (vtm->wday + 1) % 7;
02060         }
02061     }
02062 }
02063 
02064 static VALUE
02065 utc_offset_arg(VALUE arg)
02066 {
02067     VALUE tmp;
02068     if (!NIL_P(tmp = rb_check_string_type(arg))) {
02069         int n;
02070         char *s = RSTRING_PTR(tmp);
02071         if (!rb_enc_str_asciicompat_p(tmp) ||
02072             RSTRING_LEN(tmp) != 6 ||
02073             (s[0] != '+' && s[0] != '-') ||
02074             !ISDIGIT(s[1]) ||
02075             !ISDIGIT(s[2]) ||
02076             s[3] != ':' ||
02077             !ISDIGIT(s[4]) ||
02078             !ISDIGIT(s[5]))
02079             rb_raise(rb_eArgError, "\"+HH:MM\" or \"-HH:MM\" expected for utc_offset");
02080         n = (s[1] * 10 + s[2] - '0' * 11) * 3600;
02081         n += (s[4] * 10 + s[5] - '0' * 11) * 60;
02082         if (s[0] == '-')
02083             n = -n;
02084         return INT2FIX(n);
02085     }
02086     else {
02087         return num_exact(arg);
02088     }
02089 }
02090 
02091 static VALUE
02092 time_init_1(int argc, VALUE *argv, VALUE time)
02093 {
02094     struct vtm vtm;
02095     VALUE v[7];
02096     struct time_object *tobj;
02097 
02098     vtm.wday = -1;
02099     vtm.yday = 0;
02100     vtm.zone = "";
02101 
02102     /*                             year  mon   mday  hour  min   sec   off */
02103     rb_scan_args(argc, argv, "16", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6]);
02104 
02105     vtm.year = obj2vint(v[0]);
02106 
02107     vtm.mon = NIL_P(v[1]) ? 1 : month_arg(v[1]);
02108 
02109     vtm.mday = NIL_P(v[2]) ? 1 : obj2int(v[2]);
02110 
02111     vtm.hour = NIL_P(v[3]) ? 0 : obj2int(v[3]);
02112 
02113     vtm.min  = NIL_P(v[4]) ? 0 : obj2int(v[4]);
02114 
02115     vtm.sec = 0;
02116     vtm.subsecx = INT2FIX(0);
02117     if (!NIL_P(v[5])) {
02118         VALUE sec = num_exact(v[5]);
02119         VALUE subsec;
02120         divmodv(sec, INT2FIX(1), &sec, &subsec);
02121         vtm.sec = NUM2INT(sec);
02122         vtm.subsecx = w2v(rb_time_magnify(v2w(subsec)));
02123     }
02124 
02125     vtm.isdst = -1;
02126     vtm.utc_offset = Qnil;
02127     if (!NIL_P(v[6])) {
02128         VALUE arg = v[6];
02129         if (arg == ID2SYM(rb_intern("dst")))
02130             vtm.isdst = 1;
02131         else if (arg == ID2SYM(rb_intern("std")))
02132             vtm.isdst = 0;
02133         else
02134             vtm.utc_offset = utc_offset_arg(arg);
02135     }
02136 
02137     validate_vtm(&vtm);
02138 
02139     time_modify(time);
02140     GetTimeval(time, tobj);
02141     tobj->tm_got=0;
02142     tobj->timew = WINT2FIXWV(0);
02143 
02144     if (!NIL_P(vtm.utc_offset)) {
02145         VALUE off = vtm.utc_offset;
02146         vtm_add_offset(&vtm, neg(off));
02147         vtm.utc_offset = Qnil;
02148         tobj->timew = timegmw(&vtm);
02149         return time_set_utc_offset(time, off);
02150     }
02151     else {
02152         tobj->timew = timelocalw(&vtm);
02153         return time_localtime(time);
02154     }
02155 }
02156 
02157 
02158 /*
02159  *  call-seq:
02160  *     Time.new -> time
02161  *     Time.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, utc_offset=nil) -> time
02162  *
02163  *  Returns a <code>Time</code> object.
02164  *
02165  *  It is initialized to the current system time if no argument.
02166  *  <b>Note:</b> The object created will be created using the
02167  *  resolution available on your system clock, and so may include
02168  *  fractional seconds.
02169  *
02170  *  If one or more arguments specified, the time is initialized
02171  *  to the specified time.
02172  *  _sec_ may have fraction if it is a rational.
02173  *
02174  *  _utc_offset_ is the offset from UTC.
02175  *  It is a string such as "+09:00" or a number of seconds such as 32400.
02176  *
02177  *     a = Time.new      #=> 2007-11-19 07:50:02 -0600
02178  *     b = Time.new      #=> 2007-11-19 07:50:02 -0600
02179  *     a == b            #=> false
02180  *     "%.6f" % a.to_f   #=> "1195480202.282373"
02181  *     "%.6f" % b.to_f   #=> "1195480202.283415"
02182  *
02183  *     Time.new(2008,6,21, 13,30,0, "+09:00") #=> 2008-06-21 13:30:00 +0900
02184  *
02185  *     # A trip for RubyConf 2007
02186  *     t1 = Time.new(2007,11,1,15,25,0, "+09:00") # JST (Narita)
02187  *     t2 = Time.new(2007,11,1,12, 5,0, "-05:00") # CDT (Minneapolis)
02188  *     t3 = Time.new(2007,11,1,13,25,0, "-05:00") # CDT (Minneapolis)
02189  *     t4 = Time.new(2007,11,1,16,53,0, "-04:00") # EDT (Charlotte)
02190  *     t5 = Time.new(2007,11,5, 9,24,0, "-05:00") # EST (Charlotte)
02191  *     t6 = Time.new(2007,11,5,11,21,0, "-05:00") # EST (Detroit)
02192  *     t7 = Time.new(2007,11,5,13,45,0, "-05:00") # EST (Detroit)
02193  *     t8 = Time.new(2007,11,6,17,10,0, "+09:00") # JST (Narita)
02194  *     p((t2-t1)/3600.0)                          #=> 10.666666666666666
02195  *     p((t4-t3)/3600.0)                          #=> 2.466666666666667
02196  *     p((t6-t5)/3600.0)                          #=> 1.95
02197  *     p((t8-t7)/3600.0)                          #=> 13.416666666666666
02198  *
02199  */
02200 
02201 static VALUE
02202 time_init(int argc, VALUE *argv, VALUE time)
02203 {
02204     if (argc == 0)
02205         return time_init_0(time);
02206     else
02207         return time_init_1(argc, argv, time);
02208 }
02209 
02210 static void
02211 time_overflow_p(time_t *secp, long *nsecp)
02212 {
02213     time_t tmp, sec = *secp;
02214     long nsec = *nsecp;
02215 
02216     if (nsec >= 1000000000) {   /* nsec positive overflow */
02217         tmp = sec + nsec / 1000000000;
02218         nsec %= 1000000000;
02219         if (sec > 0 && tmp < 0) {
02220             rb_raise(rb_eRangeError, "out of Time range");
02221         }
02222         sec = tmp;
02223     }
02224     if (nsec < 0) {             /* nsec negative overflow */
02225         tmp = sec + NDIV(nsec,1000000000); /* negative div */
02226         nsec = NMOD(nsec,1000000000);      /* negative mod */
02227         if (sec < 0 && tmp > 0) {
02228             rb_raise(rb_eRangeError, "out of Time range");
02229         }
02230         sec = tmp;
02231     }
02232 #ifndef NEGATIVE_TIME_T
02233     if (sec < 0)
02234         rb_raise(rb_eArgError, "time must be positive");
02235 #endif
02236     *secp = sec;
02237     *nsecp = nsec;
02238 }
02239 
02240 static wideval_t
02241 nsec2timew(time_t sec, long nsec)
02242 {
02243     struct timespec ts;
02244     time_overflow_p(&sec, &nsec);
02245     ts.tv_sec = sec;
02246     ts.tv_nsec = nsec;
02247     return timespec2timew(&ts);
02248 }
02249 
02250 static VALUE
02251 time_new_timew(VALUE klass, wideval_t timew)
02252 {
02253     VALUE time = time_s_alloc(klass);
02254     struct time_object *tobj;
02255 
02256     GetTimeval(time, tobj);
02257     tobj->timew = timew;
02258 
02259     return time;
02260 }
02261 
02262 VALUE
02263 rb_time_new(time_t sec, long usec)
02264 {
02265     return time_new_timew(rb_cTime, nsec2timew(sec, usec * 1000));
02266 }
02267 
02268 VALUE
02269 rb_time_nano_new(time_t sec, long nsec)
02270 {
02271     return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
02272 }
02273 
02274 VALUE
02275 rb_time_num_new(VALUE timev, VALUE off)
02276 {
02277     VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
02278 
02279     if (!NIL_P(off)) {
02280         off = utc_offset_arg(off);
02281         validate_utc_offset(off);
02282         time_set_utc_offset(time, off);
02283         return time;
02284     }
02285 
02286     return time;
02287 }
02288 
02289 static struct timespec
02290 time_timespec(VALUE num, int interval)
02291 {
02292     struct timespec t;
02293     const char *tstr = interval ? "time interval" : "time";
02294     VALUE i, f, ary;
02295 
02296 #ifndef NEGATIVE_TIME_T
02297     interval = 1;
02298 #endif
02299 
02300     switch (TYPE(num)) {
02301       case T_FIXNUM:
02302         t.tv_sec = NUM2TIMET(num);
02303         if (interval && t.tv_sec < 0)
02304             rb_raise(rb_eArgError, "%s must be positive", tstr);
02305         t.tv_nsec = 0;
02306         break;
02307 
02308       case T_FLOAT:
02309         if (interval && RFLOAT_VALUE(num) < 0.0)
02310             rb_raise(rb_eArgError, "%s must be positive", tstr);
02311         else {
02312             double f, d;
02313 
02314             d = modf(RFLOAT_VALUE(num), &f);
02315             if (d >= 0) {
02316                 t.tv_nsec = (int)(d*1e9+0.5);
02317             }
02318             else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
02319                 t.tv_nsec = 1000000000 - t.tv_nsec;
02320                 f -= 1;
02321             }
02322             t.tv_sec = (time_t)f;
02323             if (f != t.tv_sec) {
02324                 rb_raise(rb_eRangeError, "%f out of Time range", RFLOAT_VALUE(num));
02325             }
02326         }
02327         break;
02328 
02329       case T_BIGNUM:
02330         t.tv_sec = NUM2TIMET(num);
02331         if (interval && t.tv_sec < 0)
02332             rb_raise(rb_eArgError, "%s must be positive", tstr);
02333         t.tv_nsec = 0;
02334         break;
02335 
02336       default:
02337         i = INT2FIX(1);
02338         ary = rb_check_funcall(num, id_divmod, 1, &i);
02339         if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) {
02340             i = rb_ary_entry(ary, 0);
02341             f = rb_ary_entry(ary, 1);
02342             t.tv_sec = NUM2TIMET(i);
02343             if (interval && t.tv_sec < 0)
02344                 rb_raise(rb_eArgError, "%s must be positive", tstr);
02345             f = rb_funcall(f, id_mul, 1, INT2FIX(1000000000));
02346             t.tv_nsec = NUM2LONG(f);
02347         }
02348         else {
02349             rb_raise(rb_eTypeError, "can't convert %s into %s",
02350                      rb_obj_classname(num), tstr);
02351         }
02352         break;
02353     }
02354     return t;
02355 }
02356 
02357 static struct timeval
02358 time_timeval(VALUE num, int interval)
02359 {
02360     struct timespec ts;
02361     struct timeval tv;
02362 
02363     ts = time_timespec(num, interval);
02364     tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
02365     tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
02366 
02367     return tv;
02368 }
02369 
02370 struct timeval
02371 rb_time_interval(VALUE num)
02372 {
02373     return time_timeval(num, TRUE);
02374 }
02375 
02376 struct timeval
02377 rb_time_timeval(VALUE time)
02378 {
02379     struct time_object *tobj;
02380     struct timeval t;
02381     struct timespec ts;
02382 
02383     if (IsTimeval(time)) {
02384         GetTimeval(time, tobj);
02385         ts = timew2timespec(tobj->timew);
02386         t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
02387         t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
02388         return t;
02389     }
02390     return time_timeval(time, FALSE);
02391 }
02392 
02393 struct timespec
02394 rb_time_timespec(VALUE time)
02395 {
02396     struct time_object *tobj;
02397     struct timespec t;
02398 
02399     if (IsTimeval(time)) {
02400         GetTimeval(time, tobj);
02401         t = timew2timespec(tobj->timew);
02402         return t;
02403     }
02404     return time_timespec(time, FALSE);
02405 }
02406 
02407 /*
02408  *  call-seq:
02409  *     Time.now -> time
02410  *
02411  *  Creates a new time object for the current time.
02412  *
02413  *     Time.now            #=> 2009-06-24 12:39:54 +0900
02414  */
02415 
02416 static VALUE
02417 time_s_now(VALUE klass)
02418 {
02419     return rb_class_new_instance(0, NULL, klass);
02420 }
02421 
02422 /*
02423  *  call-seq:
02424  *     Time.at(time) -> time
02425  *     Time.at(seconds_with_frac) -> time
02426  *     Time.at(seconds, microseconds_with_frac) -> time
02427  *
02428  *  Creates a new time object with the value given by <i>time</i>,
02429  *  the given number of <i>seconds_with_frac</i>, or
02430  *  <i>seconds</i> and <i>microseconds_with_frac</i> from the Epoch.
02431  *  <i>seconds_with_frac</i> and <i>microseconds_with_frac</i>
02432  *  can be Integer, Float, Rational, or other Numeric.
02433  *  non-portable feature allows the offset to be negative on some systems.
02434  *
02435  *     Time.at(0)            #=> 1969-12-31 18:00:00 -0600
02436  *     Time.at(Time.at(0))   #=> 1969-12-31 18:00:00 -0600
02437  *     Time.at(946702800)    #=> 1999-12-31 23:00:00 -0600
02438  *     Time.at(-284061600)   #=> 1960-12-31 00:00:00 -0600
02439  *     Time.at(946684800.2).usec #=> 200000
02440  *     Time.at(946684800, 123456.789).nsec #=> 123456789
02441  */
02442 
02443 static VALUE
02444 time_s_at(int argc, VALUE *argv, VALUE klass)
02445 {
02446     VALUE time, t;
02447     wideval_t timew;
02448 
02449     if (rb_scan_args(argc, argv, "11", &time, &t) == 2) {
02450         time = num_exact(time);
02451         t = num_exact(t);
02452         timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, 1000000));
02453         t = time_new_timew(klass, timew);
02454     }
02455     else if (IsTimeval(time)) {
02456         struct time_object *tobj, *tobj2;
02457         GetTimeval(time, tobj);
02458         t = time_new_timew(klass, tobj->timew);
02459         GetTimeval(t, tobj2);
02460         TIME_COPY_GMT(tobj2, tobj);
02461     }
02462     else {
02463         timew = rb_time_magnify(v2w(num_exact(time)));
02464         t = time_new_timew(klass, timew);
02465     }
02466 
02467     return t;
02468 }
02469 
02470 static const char months[][4] = {
02471     "jan", "feb", "mar", "apr", "may", "jun",
02472     "jul", "aug", "sep", "oct", "nov", "dec",
02473 };
02474 
02475 static int
02476 obj2int(VALUE obj)
02477 {
02478     if (TYPE(obj) == T_STRING) {
02479         obj = rb_str_to_inum(obj, 10, FALSE);
02480     }
02481 
02482     return NUM2INT(obj);
02483 }
02484 
02485 static VALUE
02486 obj2vint(VALUE obj)
02487 {
02488     if (TYPE(obj) == T_STRING) {
02489         obj = rb_str_to_inum(obj, 10, FALSE);
02490     }
02491     else {
02492         obj = rb_to_int(obj);
02493     }
02494 
02495     return obj;
02496 }
02497 
02498 static int
02499 obj2subsecx(VALUE obj, VALUE *subsecx)
02500 {
02501     VALUE subsec;
02502 
02503     if (TYPE(obj) == T_STRING) {
02504         obj = rb_str_to_inum(obj, 10, FALSE);
02505         *subsecx = INT2FIX(0);
02506         return NUM2INT(obj);
02507     }
02508 
02509     divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
02510     *subsecx = w2v(rb_time_magnify(v2w(subsec)));
02511     return NUM2INT(obj);
02512 }
02513 
02514 static long
02515 usec2subsecx(VALUE obj)
02516 {
02517     if (TYPE(obj) == T_STRING) {
02518         obj = rb_str_to_inum(obj, 10, FALSE);
02519     }
02520 
02521     return mulquo(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
02522 }
02523 
02524 static int
02525 month_arg(VALUE arg)
02526 {
02527     int i, mon;
02528 
02529     VALUE s = rb_check_string_type(arg);
02530     if (!NIL_P(s)) {
02531         mon = 0;
02532         for (i=0; i<12; i++) {
02533             if (RSTRING_LEN(s) == 3 &&
02534                 STRCASECMP(months[i], RSTRING_PTR(s)) == 0) {
02535                 mon = i+1;
02536                 break;
02537             }
02538         }
02539         if (mon == 0) {
02540             char c = RSTRING_PTR(s)[0];
02541 
02542             if ('0' <= c && c <= '9') {
02543                 mon = obj2int(s);
02544             }
02545         }
02546     }
02547     else {
02548         mon = obj2int(arg);
02549     }
02550     return mon;
02551 }
02552 
02553 static void
02554 validate_utc_offset(VALUE utc_offset)
02555 {
02556     if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
02557         rb_raise(rb_eArgError, "utc_offset out of range");
02558 }
02559 
02560 static void
02561 validate_vtm(struct vtm *vtm)
02562 {
02563     if (   vtm->mon  < 1 || vtm->mon  > 12
02564         || vtm->mday < 1 || vtm->mday > 31
02565         || vtm->hour < 0 || vtm->hour > 24
02566         || (vtm->hour == 24 && (vtm->min > 0 || vtm->sec > 0))
02567         || vtm->min  < 0 || vtm->min  > 59
02568         || vtm->sec  < 0 || vtm->sec  > 60
02569         || lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE))
02570         || (!NIL_P(vtm->utc_offset) && (validate_utc_offset(vtm->utc_offset), 0)))
02571         rb_raise(rb_eArgError, "argument out of range");
02572 }
02573 
02574 static void
02575 time_arg(int argc, VALUE *argv, struct vtm *vtm)
02576 {
02577     VALUE v[8];
02578 
02579     vtm->year = INT2FIX(0);
02580     vtm->mon = 0;
02581     vtm->mday = 0;
02582     vtm->hour = 0;
02583     vtm->min = 0;
02584     vtm->sec = 0;
02585     vtm->subsecx = INT2FIX(0);
02586     vtm->utc_offset = Qnil;
02587     vtm->wday = 0;
02588     vtm->yday = 0;
02589     vtm->isdst = 0;
02590     vtm->zone = "";
02591 
02592     if (argc == 10) {
02593         v[0] = argv[5];
02594         v[1] = argv[4];
02595         v[2] = argv[3];
02596         v[3] = argv[2];
02597         v[4] = argv[1];
02598         v[5] = argv[0];
02599         v[6] = Qnil;
02600         vtm->isdst = RTEST(argv[8]) ? 1 : 0;
02601     }
02602     else {
02603         rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
02604         /* v[6] may be usec or zone (parsedate) */
02605         /* v[7] is wday (parsedate; ignored) */
02606         vtm->wday = -1;
02607         vtm->isdst = -1;
02608     }
02609 
02610     vtm->year = obj2vint(v[0]);
02611 
02612     if (NIL_P(v[1])) {
02613         vtm->mon = 1;
02614     }
02615     else {
02616         vtm->mon = month_arg(v[1]);
02617     }
02618 
02619     if (NIL_P(v[2])) {
02620         vtm->mday = 1;
02621     }
02622     else {
02623         vtm->mday = obj2int(v[2]);
02624     }
02625 
02626     vtm->hour = NIL_P(v[3])?0:obj2int(v[3]);
02627 
02628     vtm->min  = NIL_P(v[4])?0:obj2int(v[4]);
02629 
02630     if (!NIL_P(v[6]) && argc == 7) {
02631         vtm->sec  = NIL_P(v[5])?0:obj2int(v[5]);
02632         vtm->subsecx  = usec2subsecx(v[6]);
02633     }
02634     else {
02635         /* when argc == 8, v[6] is timezone, but ignored */
02636         vtm->sec  = NIL_P(v[5])?0:obj2subsecx(v[5], &vtm->subsecx);
02637     }
02638 
02639     validate_vtm(vtm);
02640 }
02641 
02642 static int
02643 leap_year_p(long y)
02644 {
02645     return ((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0);
02646 }
02647 
02648 static time_t
02649 timegm_noleapsecond(struct tm *tm)
02650 {
02651     long tm_year = tm->tm_year;
02652     int tm_yday = tm->tm_mday;
02653     if (leap_year_p(tm_year + 1900))
02654         tm_yday += leap_year_yday_offset[tm->tm_mon];
02655     else
02656         tm_yday += common_year_yday_offset[tm->tm_mon];
02657 
02658     /*
02659      *  `Seconds Since the Epoch' in SUSv3:
02660      *  tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
02661      *  (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
02662      *  ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
02663      */
02664     return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
02665            (time_t)(tm_yday +
02666                     (tm_year-70)*365 +
02667                     DIV(tm_year-69,4) -
02668                     DIV(tm_year-1,100) +
02669                     DIV(tm_year+299,400))*86400;
02670 }
02671 
02672 #if 0
02673 #define DEBUG_FIND_TIME_NUMGUESS
02674 #define DEBUG_GUESSRANGE
02675 #endif
02676 
02677 #ifdef DEBUG_GUESSRANGE
02678 #define DEBUG_REPORT_GUESSRANGE fprintf(stderr, "find time guess range: %ld - %ld : %lu\n", guess_lo, guess_hi, (unsigned_time_t)(guess_hi-guess_lo))
02679 #else
02680 #define DEBUG_REPORT_GUESSRANGE
02681 #endif
02682 
02683 #ifdef DEBUG_FIND_TIME_NUMGUESS
02684 #define DEBUG_FIND_TIME_NUMGUESS_INC find_time_numguess++,
02685 static unsigned long long find_time_numguess;
02686 
02687 static VALUE find_time_numguess_getter(void)
02688 {
02689     return ULL2NUM(find_time_numguess);
02690 }
02691 #else
02692 #define DEBUG_FIND_TIME_NUMGUESS_INC
02693 #endif
02694 
02695 static const char *
02696 find_time_t(struct tm *tptr, int utc_p, time_t *tp)
02697 {
02698     time_t guess, guess0, guess_lo, guess_hi;
02699     struct tm *tm, tm0, tm_lo, tm_hi;
02700     int d;
02701     int find_dst;
02702     struct tm result;
02703     int status;
02704     int tptr_tm_yday;
02705 
02706 #define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond(p, &result) : LOCALTIME(p, result)))
02707 
02708     guess_lo = TIMET_MIN;
02709     guess_hi = TIMET_MAX;
02710 
02711     find_dst = 0 < tptr->tm_isdst;
02712 
02713 #if defined(HAVE_MKTIME)
02714     tm0 = *tptr;
02715     if (!utc_p && (guess = mktime(&tm0)) != -1) {
02716         tm = GUESS(&guess);
02717         if (tm && tmcmp(tptr, tm) == 0) {
02718             goto found;
02719         }
02720     }
02721 #endif
02722 
02723     tm0 = *tptr;
02724     if (tm0.tm_mon < 0) {
02725       tm0.tm_mon = 0;
02726       tm0.tm_mday = 1;
02727       tm0.tm_hour = 0;
02728       tm0.tm_min = 0;
02729       tm0.tm_sec = 0;
02730     }
02731     else if (11 < tm0.tm_mon) {
02732       tm0.tm_mon = 11;
02733       tm0.tm_mday = 31;
02734       tm0.tm_hour = 23;
02735       tm0.tm_min = 59;
02736       tm0.tm_sec = 60;
02737     }
02738     else if (tm0.tm_mday < 1) {
02739       tm0.tm_mday = 1;
02740       tm0.tm_hour = 0;
02741       tm0.tm_min = 0;
02742       tm0.tm_sec = 0;
02743     }
02744     else if ((d = (leap_year_p(1900 + tm0.tm_year) ?
02745                    leap_year_days_in_month :
02746                    common_year_days_in_month)[tm0.tm_mon]) < tm0.tm_mday) {
02747       tm0.tm_mday = d;
02748       tm0.tm_hour = 23;
02749       tm0.tm_min = 59;
02750       tm0.tm_sec = 60;
02751     }
02752     else if (tm0.tm_hour < 0) {
02753       tm0.tm_hour = 0;
02754       tm0.tm_min = 0;
02755       tm0.tm_sec = 0;
02756     }
02757     else if (23 < tm0.tm_hour) {
02758       tm0.tm_hour = 23;
02759       tm0.tm_min = 59;
02760       tm0.tm_sec = 60;
02761     }
02762     else if (tm0.tm_min < 0) {
02763       tm0.tm_min = 0;
02764       tm0.tm_sec = 0;
02765     }
02766     else if (59 < tm0.tm_min) {
02767       tm0.tm_min = 59;
02768       tm0.tm_sec = 60;
02769     }
02770     else if (tm0.tm_sec < 0) {
02771       tm0.tm_sec = 0;
02772     }
02773     else if (60 < tm0.tm_sec) {
02774       tm0.tm_sec = 60;
02775     }
02776 
02777     DEBUG_REPORT_GUESSRANGE;
02778     guess0 = guess = timegm_noleapsecond(&tm0);
02779     tm = GUESS(&guess);
02780     if (tm) {
02781         d = tmcmp(tptr, tm);
02782         if (d == 0) { goto found; }
02783         if (d < 0) {
02784             guess_hi = guess;
02785             guess -= 24 * 60 * 60;
02786         }
02787         else {
02788             guess_lo = guess;
02789             guess += 24 * 60 * 60;
02790         }
02791         DEBUG_REPORT_GUESSRANGE;
02792         if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
02793             d = tmcmp(tptr, tm);
02794             if (d == 0) { goto found; }
02795             if (d < 0)
02796                 guess_hi = guess;
02797             else
02798                 guess_lo = guess;
02799             DEBUG_REPORT_GUESSRANGE;
02800         }
02801     }
02802 
02803     tm = GUESS(&guess_lo);
02804     if (!tm) goto error;
02805     d = tmcmp(tptr, tm);
02806     if (d < 0) goto out_of_range;
02807     if (d == 0) { guess = guess_lo; goto found; }
02808     tm_lo = *tm;
02809 
02810     tm = GUESS(&guess_hi);
02811     if (!tm) goto error;
02812     d = tmcmp(tptr, tm);
02813     if (d > 0) goto out_of_range;
02814     if (d == 0) { guess = guess_hi; goto found; }
02815     tm_hi = *tm;
02816 
02817     DEBUG_REPORT_GUESSRANGE;
02818 
02819     status = 1;
02820 
02821     while (guess_lo + 1 < guess_hi) {
02822         if (status == 0) {
02823           binsearch:
02824             guess = guess_lo / 2 + guess_hi / 2;
02825             if (guess <= guess_lo)
02826                 guess = guess_lo + 1;
02827             else if (guess >= guess_hi)
02828                 guess = guess_hi - 1;
02829             status = 1;
02830         }
02831         else {
02832             if (status == 1) {
02833                 time_t guess0_hi = timegm_noleapsecond(&tm_hi);
02834                 guess = guess_hi - (guess0_hi - guess0);
02835                 if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
02836                     guess--;
02837                 status = 2;
02838             }
02839             else if (status == 2) {
02840                 time_t guess0_lo = timegm_noleapsecond(&tm_lo);
02841                 guess = guess_lo + (guess0 - guess0_lo);
02842                 if (guess == guess_lo)
02843                     guess++;
02844                 status = 0;
02845             }
02846             if (guess <= guess_lo || guess_hi <= guess) {
02847                 /* Precious guess is invalid. try binary search. */
02848 #ifdef DEBUG_GUESSRANGE
02849                 if (guess <= guess_lo) fprintf(stderr, "too small guess: %ld <= %ld\n", guess, guess_lo);
02850                 if (guess_hi <= guess) fprintf(stderr, "too big guess: %ld <= %ld\n", guess_hi, guess);
02851 #endif
02852                 goto binsearch;
02853             }
02854         }
02855 
02856         tm = GUESS(&guess);
02857         if (!tm) goto error;
02858 
02859         d = tmcmp(tptr, tm);
02860 
02861         if (d < 0) {
02862             guess_hi = guess;
02863             tm_hi = *tm;
02864             DEBUG_REPORT_GUESSRANGE;
02865         }
02866         else if (d > 0) {
02867             guess_lo = guess;
02868             tm_lo = *tm;
02869             DEBUG_REPORT_GUESSRANGE;
02870         }
02871         else {
02872           found:
02873             if (!utc_p) {
02874                 /* If localtime is nonmonotonic, another result may exist. */
02875                 time_t guess2;
02876                 if (find_dst) {
02877                     guess2 = guess - 2 * 60 * 60;
02878                     tm = LOCALTIME(&guess2, result);
02879                     if (tm) {
02880                         if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
02881                             tptr->tm_min != tm->tm_min ||
02882                             tptr->tm_sec != tm->tm_sec) {
02883                             guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
02884                                       (tm->tm_min - tptr->tm_min) * 60 +
02885                                       (tm->tm_sec - tptr->tm_sec);
02886                             if (tptr->tm_mday != tm->tm_mday)
02887                                 guess2 += 24 * 60 * 60;
02888                             if (guess != guess2) {
02889                                 tm = LOCALTIME(&guess2, result);
02890                                 if (tm && tmcmp(tptr, tm) == 0) {
02891                                     if (guess < guess2)
02892                                         *tp = guess;
02893                                     else
02894                                         *tp = guess2;
02895                                     return NULL;
02896                                 }
02897                             }
02898                         }
02899                     }
02900                 }
02901                 else {
02902                     guess2 = guess + 2 * 60 * 60;
02903                     tm = LOCALTIME(&guess2, result);
02904                     if (tm) {
02905                         if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
02906                             tptr->tm_min != tm->tm_min ||
02907                             tptr->tm_sec != tm->tm_sec) {
02908                             guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
02909                                       (tm->tm_min - tptr->tm_min) * 60 +
02910                                       (tm->tm_sec - tptr->tm_sec);
02911                             if (tptr->tm_mday != tm->tm_mday)
02912                                 guess2 -= 24 * 60 * 60;
02913                             if (guess != guess2) {
02914                                 tm = LOCALTIME(&guess2, result);
02915                                 if (tm && tmcmp(tptr, tm) == 0) {
02916                                     if (guess < guess2)
02917                                         *tp = guess2;
02918                                     else
02919                                         *tp = guess;
02920                                     return NULL;
02921                                 }
02922                             }
02923                         }
02924                     }
02925                 }
02926             }
02927             *tp = guess;
02928             return NULL;
02929         }
02930     }
02931     /* Given argument has no corresponding time_t. Let's outerpolation. */
02932     /*
02933      *  `Seconds Since the Epoch' in SUSv3:
02934      *  tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
02935      *  (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
02936      *  ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
02937      */
02938 
02939     tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
02940 
02941     *tp = guess_lo +
02942           ((tptr->tm_year - tm_lo.tm_year) * 365 +
02943            ((tptr->tm_year-69)/4) -
02944            ((tptr->tm_year-1)/100) +
02945            ((tptr->tm_year+299)/400) -
02946            ((tm_lo.tm_year-69)/4) +
02947            ((tm_lo.tm_year-1)/100) -
02948            ((tm_lo.tm_year+299)/400) +
02949            tptr_tm_yday -
02950            tm_lo.tm_yday) * 86400 +
02951           (tptr->tm_hour - tm_lo.tm_hour) * 3600 +
02952           (tptr->tm_min - tm_lo.tm_min) * 60 +
02953           (tptr->tm_sec - tm_lo.tm_sec);
02954 
02955     return NULL;
02956 
02957   out_of_range:
02958     return "time out of range";
02959 
02960   error:
02961     return "gmtime/localtime error";
02962 }
02963 
02964 static int
02965 vtmcmp(struct vtm *a, struct vtm *b)
02966 {
02967     if (ne(a->year, b->year))
02968         return lt(a->year, b->year) ? -1 : 1;
02969     else if (a->mon != b->mon)
02970         return a->mon < b->mon ? -1 : 1;
02971     else if (a->mday != b->mday)
02972         return a->mday < b->mday ? -1 : 1;
02973     else if (a->hour != b->hour)
02974         return a->hour < b->hour ? -1 : 1;
02975     else if (a->min != b->min)
02976         return a->min < b->min ? -1 : 1;
02977     else if (a->sec != b->sec)
02978         return a->sec < b->sec ? -1 : 1;
02979     else if (ne(a->subsecx, b->subsecx))
02980         return lt(a->subsecx, b->subsecx) ? -1 : 1;
02981     else
02982         return 0;
02983 }
02984 
02985 static int
02986 tmcmp(struct tm *a, struct tm *b)
02987 {
02988     if (a->tm_year != b->tm_year)
02989         return a->tm_year < b->tm_year ? -1 : 1;
02990     else if (a->tm_mon != b->tm_mon)
02991         return a->tm_mon < b->tm_mon ? -1 : 1;
02992     else if (a->tm_mday != b->tm_mday)
02993         return a->tm_mday < b->tm_mday ? -1 : 1;
02994     else if (a->tm_hour != b->tm_hour)
02995         return a->tm_hour < b->tm_hour ? -1 : 1;
02996     else if (a->tm_min != b->tm_min)
02997         return a->tm_min < b->tm_min ? -1 : 1;
02998     else if (a->tm_sec != b->tm_sec)
02999         return a->tm_sec < b->tm_sec ? -1 : 1;
03000     else
03001         return 0;
03002 }
03003 
03004 static VALUE
03005 time_utc_or_local(int argc, VALUE *argv, int utc_p, VALUE klass)
03006 {
03007     struct vtm vtm;
03008     VALUE time;
03009 
03010     time_arg(argc, argv, &vtm);
03011     if (utc_p)
03012         time = time_new_timew(klass, timegmw(&vtm));
03013     else
03014         time = time_new_timew(klass, timelocalw(&vtm));
03015     if (utc_p) return time_gmtime(time);
03016     return time_localtime(time);
03017 }
03018 
03019 /*
03020  *  call-seq:
03021  *    Time.utc(year) -> time
03022  *    Time.utc(year, month) -> time
03023  *    Time.utc(year, month, day) -> time
03024  *    Time.utc(year, month, day, hour) -> time
03025  *    Time.utc(year, month, day, hour, min) -> time
03026  *    Time.utc(year, month, day, hour, min, sec_with_frac) -> time
03027  *    Time.utc(year, month, day, hour, min, sec, usec_with_frac) -> time
03028  *    Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
03029  *    Time.gm(year) -> time
03030  *    Time.gm(year, month) -> time
03031  *    Time.gm(year, month, day) -> time
03032  *    Time.gm(year, month, day, hour) -> time
03033  *    Time.gm(year, month, day, hour, min) -> time
03034  *    Time.gm(year, month, day, hour, min, sec_with_frac) -> time
03035  *    Time.gm(year, month, day, hour, min, sec, usec_with_frac) -> time
03036  *    Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
03037  *
03038  *  Creates a time based on given values, interpreted as UTC (GMT). The
03039  *  year must be specified. Other values default to the minimum value
03040  *  for that field (and may be <code>nil</code> or omitted). Months may
03041  *  be specified by numbers from 1 to 12, or by the three-letter English
03042  *  month names. Hours are specified on a 24-hour clock (0..23). Raises
03043  *  an <code>ArgumentError</code> if any values are out of range. Will
03044  *  also accept ten arguments in the order output by
03045  *  <code>Time#to_a</code>.
03046  *  <i>sec_with_frac</i> and <i>usec_with_frac</i> can have a fractional part.
03047  *
03048  *     Time.utc(2000,"jan",1,20,15,1)  #=> 2000-01-01 20:15:01 UTC
03049  *     Time.gm(2000,"jan",1,20,15,1)   #=> 2000-01-01 20:15:01 UTC
03050  */
03051 static VALUE
03052 time_s_mkutc(int argc, VALUE *argv, VALUE klass)
03053 {
03054     return time_utc_or_local(argc, argv, TRUE, klass);
03055 }
03056 
03057 /*
03058  *  call-seq:
03059  *   Time.local(year) -> time
03060  *   Time.local(year, month) -> time
03061  *   Time.local(year, month, day) -> time
03062  *   Time.local(year, month, day, hour) -> time
03063  *   Time.local(year, month, day, hour, min) -> time
03064  *   Time.local(year, month, day, hour, min, sec_with_frac) -> time
03065  *   Time.local(year, month, day, hour, min, sec, usec_with_frac) -> time
03066  *   Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
03067  *   Time.mktime(year) -> time
03068  *   Time.mktime(year, month) -> time
03069  *   Time.mktime(year, month, day) -> time
03070  *   Time.mktime(year, month, day, hour) -> time
03071  *   Time.mktime(year, month, day, hour, min) -> time
03072  *   Time.mktime(year, month, day, hour, min, sec_with_frac) -> time
03073  *   Time.mktime(year, month, day, hour, min, sec, usec_with_frac) -> time
03074  *   Time.mktime(sec, min, hour, day, month, year, wday, yday, isdst, tz) -> time
03075  *
03076  *  Same as <code>Time::gm</code>, but interprets the values in the
03077  *  local time zone.
03078  *
03079  *     Time.local(2000,"jan",1,20,15,1)   #=> 2000-01-01 20:15:01 -0600
03080  */
03081 
03082 static VALUE
03083 time_s_mktime(int argc, VALUE *argv, VALUE klass)
03084 {
03085     return time_utc_or_local(argc, argv, FALSE, klass);
03086 }
03087 
03088 /*
03089  *  call-seq:
03090  *     time.to_i   -> int
03091  *     time.tv_sec -> int
03092  *
03093  *  Returns the value of <i>time</i> as an integer number of seconds
03094  *  since the Epoch.
03095  *
03096  *     t = Time.now
03097  *     "%10.5f" % t.to_f   #=> "1270968656.89607"
03098  *     t.to_i              #=> 1270968656
03099  */
03100 
03101 static VALUE
03102 time_to_i(VALUE time)
03103 {
03104     struct time_object *tobj;
03105 
03106     GetTimeval(time, tobj);
03107     return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
03108 }
03109 
03110 /*
03111  *  call-seq:
03112  *     time.to_f -> float
03113  *
03114  *  Returns the value of <i>time</i> as a floating point number of
03115  *  seconds since the Epoch.
03116  *
03117  *     t = Time.now
03118  *     "%10.5f" % t.to_f   #=> "1270968744.77658"
03119  *     t.to_i              #=> 1270968744
03120  *
03121  *  Note that IEEE 754 double is not accurate enough to represent
03122  *  number of nanoseconds from the Epoch.
03123  */
03124 
03125 static VALUE
03126 time_to_f(VALUE time)
03127 {
03128     struct time_object *tobj;
03129 
03130     GetTimeval(time, tobj);
03131     return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
03132 }
03133 
03134 /*
03135  *  call-seq:
03136  *     time.to_r -> a_rational
03137  *
03138  *  Returns the value of <i>time</i> as a rational number of seconds
03139  *  since the Epoch.
03140  *
03141  *     t = Time.now
03142  *     p t.to_r            #=> (1270968792716287611/1000000000)
03143  *
03144  *  This methods is intended to be used to get an accurate value
03145  *  representing nanoseconds from the Epoch.  You can use this
03146  *  to convert time to another Epoch.
03147  */
03148 
03149 static VALUE
03150 time_to_r(VALUE time)
03151 {
03152     struct time_object *tobj;
03153     VALUE v;
03154 
03155     GetTimeval(time, tobj);
03156     v = w2v(rb_time_unmagnify(tobj->timew));
03157     if (TYPE(v) != T_RATIONAL) {
03158         v = rb_Rational1(v);
03159     }
03160     return v;
03161 }
03162 
03163 /*
03164  *  call-seq:
03165  *     time.usec    -> int
03166  *     time.tv_usec -> int
03167  *
03168  *  Returns just the number of microseconds for <i>time</i>.
03169  *
03170  *     t = Time.now        #=> 2007-11-19 08:03:26 -0600
03171  *     "%10.6f" % t.to_f   #=> "1195481006.775195"
03172  *     t.usec              #=> 775195
03173  */
03174 
03175 static VALUE
03176 time_usec(VALUE time)
03177 {
03178     struct time_object *tobj;
03179     wideval_t w, q, r;
03180 
03181     GetTimeval(time, tobj);
03182 
03183     w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
03184     wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
03185     return rb_to_int(w2v(q));
03186 }
03187 
03188 /*
03189  *  call-seq:
03190  *     time.nsec    -> int
03191  *     time.tv_nsec -> int
03192  *
03193  *  Returns just the number of nanoseconds for <i>time</i>.
03194  *
03195  *     t = Time.now        #=> 2007-11-17 15:18:03 +0900
03196  *     "%10.9f" % t.to_f   #=> "1195280283.536151409"
03197  *     t.nsec              #=> 536151406
03198  *
03199  *  The lowest digit of to_f and nsec is different because
03200  *  IEEE 754 double is not accurate enough to represent
03201  *  nanoseconds from the Epoch.
03202  *  The accurate value is returned by nsec.
03203  */
03204 
03205 static VALUE
03206 time_nsec(VALUE time)
03207 {
03208     struct time_object *tobj;
03209 
03210     GetTimeval(time, tobj);
03211     return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
03212 }
03213 
03214 /*
03215  *  call-seq:
03216  *     time.subsec    -> number
03217  *
03218  *  Returns just the fraction for <i>time</i>.
03219  *
03220  *  The result is possibly rational.
03221  *
03222  *     t = Time.now        #=> 2009-03-26 22:33:12 +0900
03223  *     "%10.9f" % t.to_f   #=> "1238074392.940563917"
03224  *     t.subsec            #=> (94056401/100000000)
03225  *
03226  *  The lowest digit of to_f and subsec is different because
03227  *  IEEE 754 double is not accurate enough to represent
03228  *  the rational.
03229  *  The accurate value is returned by subsec.
03230  */
03231 
03232 static VALUE
03233 time_subsec(VALUE time)
03234 {
03235     struct time_object *tobj;
03236 
03237     GetTimeval(time, tobj);
03238     return quo(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
03239 }
03240 
03241 /*
03242  *  call-seq:
03243  *     time <=> other_time -> -1, 0, +1 or nil
03244  *
03245  *  Comparison---Compares <i>time</i> with <i>other_time</i>.
03246  *
03247  *     t = Time.now       #=> 2007-11-19 08:12:12 -0600
03248  *     t2 = t + 2592000   #=> 2007-12-19 08:12:12 -0600
03249  *     t <=> t2           #=> -1
03250  *     t2 <=> t           #=> 1
03251  *
03252  *     t = Time.now       #=> 2007-11-19 08:13:38 -0600
03253  *     t2 = t + 0.1       #=> 2007-11-19 08:13:38 -0600
03254  *     t.nsec             #=> 98222999
03255  *     t2.nsec            #=> 198222999
03256  *     t <=> t2           #=> -1
03257  *     t2 <=> t           #=> 1
03258  *     t <=> t            #=> 0
03259  */
03260 
03261 static VALUE
03262 time_cmp(VALUE time1, VALUE time2)
03263 {
03264     struct time_object *tobj1, *tobj2;
03265     int n;
03266 
03267     GetTimeval(time1, tobj1);
03268     if (IsTimeval(time2)) {
03269         GetTimeval(time2, tobj2);
03270         n = wcmp(tobj1->timew, tobj2->timew);
03271     }
03272     else {
03273         VALUE tmp;
03274 
03275         tmp = rb_funcall(time2, rb_intern("<=>"), 1, time1);
03276         if (NIL_P(tmp)) return Qnil;
03277 
03278         n = -rb_cmpint(tmp, time1, time2);
03279     }
03280     if (n == 0) return INT2FIX(0);
03281     if (n > 0) return INT2FIX(1);
03282     return INT2FIX(-1);
03283 }
03284 
03285 /*
03286  * call-seq:
03287  *  time.eql?(other_time)
03288  *
03289  * Return <code>true</code> if <i>time</i> and <i>other_time</i> are
03290  * both <code>Time</code> objects with the same seconds and fractional
03291  * seconds.
03292  */
03293 
03294 static VALUE
03295 time_eql(VALUE time1, VALUE time2)
03296 {
03297     struct time_object *tobj1, *tobj2;
03298 
03299     GetTimeval(time1, tobj1);
03300     if (IsTimeval(time2)) {
03301         GetTimeval(time2, tobj2);
03302         return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
03303     }
03304     return Qfalse;
03305 }
03306 
03307 /*
03308  *  call-seq:
03309  *     time.utc? -> true or false
03310  *     time.gmt? -> true or false
03311  *
03312  *  Returns <code>true</code> if <i>time</i> represents a time in UTC
03313  *  (GMT).
03314  *
03315  *     t = Time.now                        #=> 2007-11-19 08:15:23 -0600
03316  *     t.utc?                              #=> false
03317  *     t = Time.gm(2000,"jan",1,20,15,1)   #=> 2000-01-01 20:15:01 UTC
03318  *     t.utc?                              #=> true
03319  *
03320  *     t = Time.now                        #=> 2007-11-19 08:16:03 -0600
03321  *     t.gmt?                              #=> false
03322  *     t = Time.gm(2000,1,1,20,15,1)       #=> 2000-01-01 20:15:01 UTC
03323  *     t.gmt?                              #=> true
03324  */
03325 
03326 static VALUE
03327 time_utc_p(VALUE time)
03328 {
03329     struct time_object *tobj;
03330 
03331     GetTimeval(time, tobj);
03332     if (TIME_UTC_P(tobj)) return Qtrue;
03333     return Qfalse;
03334 }
03335 
03336 /*
03337  * call-seq:
03338  *   time.hash   -> fixnum
03339  *
03340  * Return a hash code for this time object.
03341  */
03342 
03343 static VALUE
03344 time_hash(VALUE time)
03345 {
03346     struct time_object *tobj;
03347 
03348     GetTimeval(time, tobj);
03349     return rb_hash(w2v(tobj->timew));
03350 }
03351 
03352 /* :nodoc: */
03353 static VALUE
03354 time_init_copy(VALUE copy, VALUE time)
03355 {
03356     struct time_object *tobj, *tcopy;
03357 
03358     if (copy == time) return copy;
03359     time_modify(copy);
03360     GetTimeval(time, tobj);
03361     GetTimeval(copy, tcopy);
03362     MEMCPY(tcopy, tobj, struct time_object, 1);
03363 
03364     return copy;
03365 }
03366 
03367 static VALUE
03368 time_dup(VALUE time)
03369 {
03370     VALUE dup = time_s_alloc(CLASS_OF(time));
03371     time_init_copy(dup, time);
03372     return dup;
03373 }
03374 
03375 static VALUE
03376 time_localtime(VALUE time)
03377 {
03378     struct time_object *tobj;
03379     struct vtm vtm;
03380 
03381     GetTimeval(time, tobj);
03382     if (TIME_LOCALTIME_P(tobj)) {
03383         if (tobj->tm_got)
03384             return time;
03385     }
03386     else {
03387         time_modify(time);
03388     }
03389 
03390     if (!localtimew(tobj->timew, &vtm))
03391         rb_raise(rb_eArgError, "localtime error");
03392     tobj->vtm = vtm;
03393 
03394     tobj->tm_got = 1;
03395     TIME_SET_LOCALTIME(tobj);
03396     return time;
03397 }
03398 
03399 /*
03400  *  call-seq:
03401  *     time.localtime -> time
03402  *     time.localtime(utc_offset) -> time
03403  *
03404  *  Converts <i>time</i> to local time (using the local time zone in
03405  *  effect for this process) modifying the receiver.
03406  *
03407  *  If _utc_offset_ is given, it is used instead of the local time.
03408  *
03409  *     t = Time.utc(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC
03410  *     t.utc?                                  #=> true
03411  *
03412  *     t.localtime                             #=> 2000-01-01 14:15:01 -0600
03413  *     t.utc?                                  #=> false
03414  *
03415  *     t.localtime("+09:00")                   #=> 2000-01-02 05:15:01 +0900
03416  *     t.utc?                                  #=> false
03417  */
03418 
03419 static VALUE
03420 time_localtime_m(int argc, VALUE *argv, VALUE time)
03421 {
03422     VALUE off;
03423     rb_scan_args(argc, argv, "01", &off);
03424 
03425     if (!NIL_P(off)) {
03426         off = utc_offset_arg(off);
03427         validate_utc_offset(off);
03428 
03429         time_set_utc_offset(time, off);
03430         return time_fixoff(time);
03431     }
03432 
03433     return time_localtime(time);
03434 }
03435 
03436 /*
03437  *  call-seq:
03438  *     time.gmtime    -> time
03439  *     time.utc       -> time
03440  *
03441  *  Converts <i>time</i> to UTC (GMT), modifying the receiver.
03442  *
03443  *     t = Time.now   #=> 2007-11-19 08:18:31 -0600
03444  *     t.gmt?         #=> false
03445  *     t.gmtime       #=> 2007-11-19 14:18:31 UTC
03446  *     t.gmt?         #=> true
03447  *
03448  *     t = Time.now   #=> 2007-11-19 08:18:51 -0600
03449  *     t.utc?         #=> false
03450  *     t.utc          #=> 2007-11-19 14:18:51 UTC
03451  *     t.utc?         #=> true
03452  */
03453 
03454 static VALUE
03455 time_gmtime(VALUE time)
03456 {
03457     struct time_object *tobj;
03458     struct vtm vtm;
03459 
03460     GetTimeval(time, tobj);
03461     if (TIME_UTC_P(tobj)) {
03462         if (tobj->tm_got)
03463             return time;
03464     }
03465     else {
03466         time_modify(time);
03467     }
03468 
03469     if (!gmtimew(tobj->timew, &vtm))
03470         rb_raise(rb_eArgError, "gmtime error");
03471     tobj->vtm = vtm;
03472 
03473     tobj->tm_got = 1;
03474     TIME_SET_UTC(tobj);
03475     return time;
03476 }
03477 
03478 static VALUE
03479 time_fixoff(VALUE time)
03480 {
03481     struct time_object *tobj;
03482     struct vtm vtm;
03483     VALUE off;
03484 
03485     GetTimeval(time, tobj);
03486     if (TIME_FIXOFF_P(tobj)) {
03487        if (tobj->tm_got)
03488            return time;
03489     }
03490     else {
03491        time_modify(time);
03492     }
03493 
03494     if (TIME_FIXOFF_P(tobj))
03495         off = tobj->vtm.utc_offset;
03496     else
03497         off = INT2FIX(0);
03498 
03499     if (!gmtimew(tobj->timew, &vtm))
03500        rb_raise(rb_eArgError, "gmtime error");
03501 
03502     tobj->vtm = vtm;
03503     vtm_add_offset(&tobj->vtm, off);
03504 
03505     tobj->tm_got = 1;
03506     TIME_SET_FIXOFF(tobj, off);
03507     return time;
03508 }
03509 
03510 /*
03511  *  call-seq:
03512  *     time.getlocal -> new_time
03513  *     time.getlocal(utc_offset) -> new_time
03514  *
03515  *  Returns a new <code>new_time</code> object representing <i>time</i> in
03516  *  local time (using the local time zone in effect for this process).
03517  *
03518  *  If _utc_offset_ is given, it is used instead of the local time.
03519  *
03520  *     t = Time.utc(2000,1,1,20,15,1)  #=> 2000-01-01 20:15:01 UTC
03521  *     t.utc?                          #=> true
03522  *
03523  *     l = t.getlocal                  #=> 2000-01-01 14:15:01 -0600
03524  *     l.utc?                          #=> false
03525  *     t == l                          #=> true
03526  *
03527  *     j = t.getlocal("+09:00")        #=> 2000-01-02 05:15:01 +0900
03528  *     j.utc?                          #=> false
03529  *     t == j                          #=> true
03530  */
03531 
03532 static VALUE
03533 time_getlocaltime(int argc, VALUE *argv, VALUE time)
03534 {
03535     VALUE off;
03536     rb_scan_args(argc, argv, "01", &off);
03537 
03538     if (!NIL_P(off)) {
03539         off = utc_offset_arg(off);
03540         validate_utc_offset(off);
03541 
03542         time = time_dup(time);
03543         time_set_utc_offset(time, off);
03544         return time_fixoff(time);
03545     }
03546 
03547     return time_localtime(time_dup(time));
03548 }
03549 
03550 /*
03551  *  call-seq:
03552  *     time.getgm  -> new_time
03553  *     time.getutc -> new_time
03554  *
03555  *  Returns a new <code>new_time</code> object representing <i>time</i> in
03556  *  UTC.
03557  *
03558  *     t = Time.local(2000,1,1,20,15,1)   #=> 2000-01-01 20:15:01 -0600
03559  *     t.gmt?                             #=> false
03560  *     y = t.getgm                        #=> 2000-01-02 02:15:01 UTC
03561  *     y.gmt?                             #=> true
03562  *     t == y                             #=> true
03563  */
03564 
03565 static VALUE
03566 time_getgmtime(VALUE time)
03567 {
03568     return time_gmtime(time_dup(time));
03569 }
03570 
03571 static VALUE
03572 time_get_tm(VALUE time, struct time_object *tobj)
03573 {
03574     if (TIME_UTC_P(tobj)) return time_gmtime(time);
03575     if (TIME_FIXOFF_P(tobj)) return time_fixoff(time);
03576     return time_localtime(time);
03577 }
03578 
03579 static VALUE strftimev(const char *fmt, VALUE time);
03580 
03581 /*
03582  *  call-seq:
03583  *     time.asctime -> string
03584  *     time.ctime   -> string
03585  *
03586  *  Returns a canonical string representation of <i>time</i>.
03587  *
03588  *     Time.now.asctime   #=> "Wed Apr  9 08:56:03 2003"
03589  */
03590 
03591 static VALUE
03592 time_asctime(VALUE time)
03593 {
03594     struct time_object *tobj;
03595 
03596     GetTimeval(time, tobj);
03597     return strftimev("%a %b %e %T %Y", time);
03598 }
03599 
03600 /*
03601  *  call-seq:
03602  *     time.inspect -> string
03603  *     time.to_s    -> string
03604  *
03605  *  Returns a string representing <i>time</i>. Equivalent to calling
03606  *  <code>Time#strftime</code> with a format string of
03607  *  ``<code>%Y-%m-%d</code> <code>%H:%M:%S</code> <code>%z</code>''
03608  *  for a local time and
03609  *  ``<code>%Y-%m-%d</code> <code>%H:%M:%S</code> <code>UTC</code>''
03610  *  for a UTC time.
03611  *
03612  *     Time.now.to_s       #=> "2007-10-05 16:09:51 +0900"
03613  *     Time.now.utc.to_s   #=> "2007-10-05 07:09:51 UTC"
03614  */
03615 
03616 static VALUE
03617 time_to_s(VALUE time)
03618 {
03619     struct time_object *tobj;
03620 
03621     GetTimeval(time, tobj);
03622     if (TIME_UTC_P(tobj))
03623         return strftimev("%Y-%m-%d %H:%M:%S UTC", time);
03624     else
03625         return strftimev("%Y-%m-%d %H:%M:%S %z", time);
03626 }
03627 
03628 static VALUE
03629 time_add(struct time_object *tobj, VALUE offset, int sign)
03630 {
03631     VALUE result;
03632     offset = num_exact(offset);
03633     if (sign < 0)
03634         result = time_new_timew(rb_cTime, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
03635     else
03636         result = time_new_timew(rb_cTime, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
03637     if (TIME_UTC_P(tobj)) {
03638         GetTimeval(result, tobj);
03639         TIME_SET_UTC(tobj);
03640     }
03641     else if (TIME_FIXOFF_P(tobj)) {
03642         VALUE off = tobj->vtm.utc_offset;
03643         GetTimeval(result, tobj);
03644         TIME_SET_FIXOFF(tobj, off);
03645     }
03646     return result;
03647 }
03648 
03649 /*
03650  *  call-seq:
03651  *     time + numeric -> time
03652  *
03653  *  Addition---Adds some number of seconds (possibly fractional) to
03654  *  <i>time</i> and returns that value as a new time.
03655  *
03656  *     t = Time.now         #=> 2007-11-19 08:22:21 -0600
03657  *     t + (60 * 60 * 24)   #=> 2007-11-20 08:22:21 -0600
03658  */
03659 
03660 static VALUE
03661 time_plus(VALUE time1, VALUE time2)
03662 {
03663     struct time_object *tobj;
03664     GetTimeval(time1, tobj);
03665 
03666     if (IsTimeval(time2)) {
03667         rb_raise(rb_eTypeError, "time + time?");
03668     }
03669     return time_add(tobj, time2, 1);
03670 }
03671 
03672 /*
03673  *  call-seq:
03674  *     time - other_time -> float
03675  *     time - numeric    -> time
03676  *
03677  *  Difference---Returns a new time that represents the difference
03678  *  between two times, or subtracts the given number of seconds in
03679  *  <i>numeric</i> from <i>time</i>.
03680  *
03681  *     t = Time.now       #=> 2007-11-19 08:23:10 -0600
03682  *     t2 = t + 2592000   #=> 2007-12-19 08:23:10 -0600
03683  *     t2 - t             #=> 2592000.0
03684  *     t2 - 2592000       #=> 2007-11-19 08:23:10 -0600
03685  */
03686 
03687 static VALUE
03688 time_minus(VALUE time1, VALUE time2)
03689 {
03690     struct time_object *tobj;
03691 
03692     GetTimeval(time1, tobj);
03693     if (IsTimeval(time2)) {
03694         struct time_object *tobj2;
03695 
03696         GetTimeval(time2, tobj2);
03697         return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
03698     }
03699     return time_add(tobj, time2, -1);
03700 }
03701 
03702 /*
03703  * call-seq:
03704  *   time.succ   -> new_time
03705  *
03706  * Return a new time object, one second later than <code>time</code>.
03707  * Time#succ is obsolete since 1.9.2 for time is not a discrete value.
03708  *
03709  *     t = Time.now       #=> 2007-11-19 08:23:57 -0600
03710  *     t.succ             #=> 2007-11-19 08:23:58 -0600
03711  */
03712 
03713 VALUE
03714 rb_time_succ(VALUE time)
03715 {
03716     struct time_object *tobj;
03717     struct time_object *tobj2;
03718 
03719     rb_warn("Time#succ is obsolete; use time + 1");
03720     GetTimeval(time, tobj);
03721     time = time_new_timew(rb_cTime, wadd(tobj->timew, WINT2FIXWV(TIME_SCALE)));
03722     GetTimeval(time, tobj2);
03723     TIME_COPY_GMT(tobj2, tobj);
03724     return time;
03725 }
03726 
03727 #define time_succ rb_time_succ
03728 
03729 /*
03730  * call-seq:
03731  *   time.round([ndigits])   -> new_time
03732  *
03733  * Rounds sub seconds to a given precision in decimal digits (0 digits by default).
03734  * It returns a new time object.
03735  * _ndigits_ should be zero or positive integer.
03736  *
03737  *     require 'time'
03738  *
03739  *     t = Time.utc(2010,3,30, 5,43,"25.123456789".to_r)
03740  *     p t.iso8601(10)           #=> "2010-03-30T05:43:25.1234567890Z"
03741  *     p t.round.iso8601(10)     #=> "2010-03-30T05:43:25.0000000000Z"
03742  *     p t.round(0).iso8601(10)  #=> "2010-03-30T05:43:25.0000000000Z"
03743  *     p t.round(1).iso8601(10)  #=> "2010-03-30T05:43:25.1000000000Z"
03744  *     p t.round(2).iso8601(10)  #=> "2010-03-30T05:43:25.1200000000Z"
03745  *     p t.round(3).iso8601(10)  #=> "2010-03-30T05:43:25.1230000000Z"
03746  *     p t.round(4).iso8601(10)  #=> "2010-03-30T05:43:25.1235000000Z"
03747  *     p t.round(5).iso8601(10)  #=> "2010-03-30T05:43:25.1234600000Z"
03748  *     p t.round(6).iso8601(10)  #=> "2010-03-30T05:43:25.1234570000Z"
03749  *     p t.round(7).iso8601(10)  #=> "2010-03-30T05:43:25.1234568000Z"
03750  *     p t.round(8).iso8601(10)  #=> "2010-03-30T05:43:25.1234567900Z"
03751  *     p t.round(9).iso8601(10)  #=> "2010-03-30T05:43:25.1234567890Z"
03752  *     p t.round(10).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
03753  *
03754  *     t = Time.utc(1999,12,31, 23,59,59)
03755  *     p((t + 0.4).round.iso8601(3))    #=> "1999-12-31T23:59:59.000Z"
03756  *     p((t + 0.49).round.iso8601(3))   #=> "1999-12-31T23:59:59.000Z"
03757  *     p((t + 0.5).round.iso8601(3))    #=> "2000-01-01T00:00:00.000Z"
03758  *     p((t + 1.4).round.iso8601(3))    #=> "2000-01-01T00:00:00.000Z"
03759  *     p((t + 1.49).round.iso8601(3))   #=> "2000-01-01T00:00:00.000Z"
03760  *     p((t + 1.5).round.iso8601(3))    #=> "2000-01-01T00:00:01.000Z"
03761  *
03762  *     t = Time.utc(1999,12,31, 23,59,59)
03763  *     p (t + 0.123456789).round(4).iso8601(6)  #=> "1999-12-31T23:59:59.123500Z"
03764  */
03765 
03766 static VALUE
03767 time_round(int argc, VALUE *argv, VALUE time)
03768 {
03769     VALUE ndigits, v, a, b, den;
03770     long nd;
03771     struct time_object *tobj;
03772 
03773     rb_scan_args(argc, argv, "01", &ndigits);
03774 
03775     if (NIL_P(ndigits))
03776         ndigits = INT2FIX(0);
03777     else
03778         ndigits = rb_to_int(ndigits);
03779 
03780     nd = NUM2LONG(ndigits);
03781     if (nd < 0)
03782         rb_raise(rb_eArgError, "negative ndigits given");
03783 
03784     GetTimeval(time, tobj);
03785     v = w2v(rb_time_unmagnify(tobj->timew));
03786 
03787     a = INT2FIX(1);
03788     b = INT2FIX(10);
03789     while (0 < nd) {
03790         if (nd & 1)
03791             a = mul(a, b);
03792         b = mul(b, b);
03793         nd = nd >> 1;
03794     }
03795     den = quo(INT2FIX(1), a);
03796     v = mod(v, den);
03797     if (lt(v, quo(den, INT2FIX(2))))
03798         return time_add(tobj, v, -1);
03799     else
03800         return time_add(tobj, sub(den, v), 1);
03801 }
03802 
03803 /*
03804  *  call-seq:
03805  *     time.sec -> fixnum
03806  *
03807  *  Returns the second of the minute (0..60)<em>[Yes, seconds really can
03808  *  range from zero to 60. This allows the system to inject leap seconds
03809  *  every now and then to correct for the fact that years are not really
03810  *  a convenient number of hours long.]</em> for <i>time</i>.
03811  *
03812  *     t = Time.now   #=> 2007-11-19 08:25:02 -0600
03813  *     t.sec          #=> 2
03814  */
03815 
03816 static VALUE
03817 time_sec(VALUE time)
03818 {
03819     struct time_object *tobj;
03820 
03821     GetTimeval(time, tobj);
03822     MAKE_TM(time, tobj);
03823     return INT2FIX(tobj->vtm.sec);
03824 }
03825 
03826 /*
03827  *  call-seq:
03828  *     time.min -> fixnum
03829  *
03830  *  Returns the minute of the hour (0..59) for <i>time</i>.
03831  *
03832  *     t = Time.now   #=> 2007-11-19 08:25:51 -0600
03833  *     t.min          #=> 25
03834  */
03835 
03836 static VALUE
03837 time_min(VALUE time)
03838 {
03839     struct time_object *tobj;
03840 
03841     GetTimeval(time, tobj);
03842     MAKE_TM(time, tobj);
03843     return INT2FIX(tobj->vtm.min);
03844 }
03845 
03846 /*
03847  *  call-seq:
03848  *     time.hour -> fixnum
03849  *
03850  *  Returns the hour of the day (0..23) for <i>time</i>.
03851  *
03852  *     t = Time.now   #=> 2007-11-19 08:26:20 -0600
03853  *     t.hour         #=> 8
03854  */
03855 
03856 static VALUE
03857 time_hour(VALUE time)
03858 {
03859     struct time_object *tobj;
03860 
03861     GetTimeval(time, tobj);
03862     MAKE_TM(time, tobj);
03863     return INT2FIX(tobj->vtm.hour);
03864 }
03865 
03866 /*
03867  *  call-seq:
03868  *     time.day  -> fixnum
03869  *     time.mday -> fixnum
03870  *
03871  *  Returns the day of the month (1..n) for <i>time</i>.
03872  *
03873  *     t = Time.now   #=> 2007-11-19 08:27:03 -0600
03874  *     t.day          #=> 19
03875  *     t.mday         #=> 19
03876  */
03877 
03878 static VALUE
03879 time_mday(VALUE time)
03880 {
03881     struct time_object *tobj;
03882 
03883     GetTimeval(time, tobj);
03884     MAKE_TM(time, tobj);
03885     return INT2FIX(tobj->vtm.mday);
03886 }
03887 
03888 /*
03889  *  call-seq:
03890  *     time.mon   -> fixnum
03891  *     time.month -> fixnum
03892  *
03893  *  Returns the month of the year (1..12) for <i>time</i>.
03894  *
03895  *     t = Time.now   #=> 2007-11-19 08:27:30 -0600
03896  *     t.mon          #=> 11
03897  *     t.month        #=> 11
03898  */
03899 
03900 static VALUE
03901 time_mon(VALUE time)
03902 {
03903     struct time_object *tobj;
03904 
03905     GetTimeval(time, tobj);
03906     MAKE_TM(time, tobj);
03907     return INT2FIX(tobj->vtm.mon);
03908 }
03909 
03910 /*
03911  *  call-seq:
03912  *     time.year -> fixnum
03913  *
03914  *  Returns the year for <i>time</i> (including the century).
03915  *
03916  *     t = Time.now   #=> 2007-11-19 08:27:51 -0600
03917  *     t.year         #=> 2007
03918  */
03919 
03920 static VALUE
03921 time_year(VALUE time)
03922 {
03923     struct time_object *tobj;
03924 
03925     GetTimeval(time, tobj);
03926     MAKE_TM(time, tobj);
03927     return tobj->vtm.year;
03928 }
03929 
03930 /*
03931  *  call-seq:
03932  *     time.wday -> fixnum
03933  *
03934  *  Returns an integer representing the day of the week, 0..6, with
03935  *  Sunday == 0.
03936  *
03937  *     t = Time.now   #=> 2007-11-20 02:35:35 -0600
03938  *     t.wday         #=> 2
03939  *     t.sunday?      #=> false
03940  *     t.monday?      #=> false
03941  *     t.tuesday?     #=> true
03942  *     t.wednesday?   #=> false
03943  *     t.thursday?    #=> false
03944  *     t.friday?      #=> false
03945  *     t.saturday?    #=> false
03946  */
03947 
03948 static VALUE
03949 time_wday(VALUE time)
03950 {
03951     struct time_object *tobj;
03952 
03953     GetTimeval(time, tobj);
03954     MAKE_TM(time, tobj);
03955     return INT2FIX(tobj->vtm.wday);
03956 }
03957 
03958 #define wday_p(n) {\
03959     struct time_object *tobj;\
03960     GetTimeval(time, tobj);\
03961     MAKE_TM(time, tobj);\
03962     return (tobj->vtm.wday == (n)) ? Qtrue : Qfalse;\
03963 }
03964 
03965 /*
03966  *  call-seq:
03967  *     time.sunday? -> true or false
03968  *
03969  *  Returns <code>true</code> if <i>time</i> represents Sunday.
03970  *
03971  *     t = Time.local(1990, 4, 1)       #=> 1990-04-01 00:00:00 -0600
03972  *     t.sunday?                        #=> true
03973  */
03974 
03975 static VALUE
03976 time_sunday(VALUE time)
03977 {
03978     wday_p(0);
03979 }
03980 
03981 /*
03982  *  call-seq:
03983  *     time.monday? -> true or false
03984  *
03985  *  Returns <code>true</code> if <i>time</i> represents Monday.
03986  *
03987  *     t = Time.local(2003, 8, 4)       #=> 2003-08-04 00:00:00 -0500
03988  *     p t.monday?                      #=> true
03989  */
03990 
03991 static VALUE
03992 time_monday(VALUE time)
03993 {
03994     wday_p(1);
03995 }
03996 
03997 /*
03998  *  call-seq:
03999  *     time.tuesday? -> true or false
04000  *
04001  *  Returns <code>true</code> if <i>time</i> represents Tuesday.
04002  *
04003  *     t = Time.local(1991, 2, 19)      #=> 1991-02-19 00:00:00 -0600
04004  *     p t.tuesday?                     #=> true
04005  */
04006 
04007 static VALUE
04008 time_tuesday(VALUE time)
04009 {
04010     wday_p(2);
04011 }
04012 
04013 /*
04014  *  call-seq:
04015  *     time.wednesday? -> true or false
04016  *
04017  *  Returns <code>true</code> if <i>time</i> represents Wednesday.
04018  *
04019  *     t = Time.local(1993, 2, 24)      #=> 1993-02-24 00:00:00 -0600
04020  *     p t.wednesday?                   #=> true
04021  */
04022 
04023 static VALUE
04024 time_wednesday(VALUE time)
04025 {
04026     wday_p(3);
04027 }
04028 
04029 /*
04030  *  call-seq:
04031  *     time.thursday? -> true or false
04032  *
04033  *  Returns <code>true</code> if <i>time</i> represents Thursday.
04034  *
04035  *     t = Time.local(1995, 12, 21)     #=> 1995-12-21 00:00:00 -0600
04036  *     p t.thursday?                    #=> true
04037  */
04038 
04039 static VALUE
04040 time_thursday(VALUE time)
04041 {
04042     wday_p(4);
04043 }
04044 
04045 /*
04046  *  call-seq:
04047  *     time.friday? -> true or false
04048  *
04049  *  Returns <code>true</code> if <i>time</i> represents Friday.
04050  *
04051  *     t = Time.local(1987, 12, 18)     #=> 1987-12-18 00:00:00 -0600
04052  *     t.friday?                        #=> true
04053  */
04054 
04055 static VALUE
04056 time_friday(VALUE time)
04057 {
04058     wday_p(5);
04059 }
04060 
04061 /*
04062  *  call-seq:
04063  *     time.saturday? -> true or false
04064  *
04065  *  Returns <code>true</code> if <i>time</i> represents Saturday.
04066  *
04067  *     t = Time.local(2006, 6, 10)      #=> 2006-06-10 00:00:00 -0500
04068  *     t.saturday?                      #=> true
04069  */
04070 
04071 static VALUE
04072 time_saturday(VALUE time)
04073 {
04074     wday_p(6);
04075 }
04076 
04077 /*
04078  *  call-seq:
04079  *     time.yday -> fixnum
04080  *
04081  *  Returns an integer representing the day of the year, 1..366.
04082  *
04083  *     t = Time.now   #=> 2007-11-19 08:32:31 -0600
04084  *     t.yday         #=> 323
04085  */
04086 
04087 static VALUE
04088 time_yday(VALUE time)
04089 {
04090     struct time_object *tobj;
04091 
04092     GetTimeval(time, tobj);
04093     MAKE_TM(time, tobj);
04094     return INT2FIX(tobj->vtm.yday);
04095 }
04096 
04097 /*
04098  *  call-seq:
04099  *     time.isdst -> true or false
04100  *     time.dst?  -> true or false
04101  *
04102  *  Returns <code>true</code> if <i>time</i> occurs during Daylight
04103  *  Saving Time in its time zone.
04104  *
04105  *   # CST6CDT:
04106  *     Time.local(2000, 1, 1).zone    #=> "CST"
04107  *     Time.local(2000, 1, 1).isdst   #=> false
04108  *     Time.local(2000, 1, 1).dst?    #=> false
04109  *     Time.local(2000, 7, 1).zone    #=> "CDT"
04110  *     Time.local(2000, 7, 1).isdst   #=> true
04111  *     Time.local(2000, 7, 1).dst?    #=> true
04112  *
04113  *   # Asia/Tokyo:
04114  *     Time.local(2000, 1, 1).zone    #=> "JST"
04115  *     Time.local(2000, 1, 1).isdst   #=> false
04116  *     Time.local(2000, 1, 1).dst?    #=> false
04117  *     Time.local(2000, 7, 1).zone    #=> "JST"
04118  *     Time.local(2000, 7, 1).isdst   #=> false
04119  *     Time.local(2000, 7, 1).dst?    #=> false
04120  */
04121 
04122 static VALUE
04123 time_isdst(VALUE time)
04124 {
04125     struct time_object *tobj;
04126 
04127     GetTimeval(time, tobj);
04128     MAKE_TM(time, tobj);
04129     return tobj->vtm.isdst ? Qtrue : Qfalse;
04130 }
04131 
04132 /*
04133  *  call-seq:
04134  *     time.zone -> string
04135  *
04136  *  Returns the name of the time zone used for <i>time</i>. As of Ruby
04137  *  1.8, returns ``UTC'' rather than ``GMT'' for UTC times.
04138  *
04139  *     t = Time.gm(2000, "jan", 1, 20, 15, 1)
04140  *     t.zone   #=> "UTC"
04141  *     t = Time.local(2000, "jan", 1, 20, 15, 1)
04142  *     t.zone   #=> "CST"
04143  */
04144 
04145 static VALUE
04146 time_zone(VALUE time)
04147 {
04148     struct time_object *tobj;
04149 
04150     GetTimeval(time, tobj);
04151     MAKE_TM(time, tobj);
04152 
04153     if (TIME_UTC_P(tobj)) {
04154         return rb_str_new2("UTC");
04155     }
04156     if (tobj->vtm.zone == NULL)
04157         return Qnil;
04158     return rb_str_new2(tobj->vtm.zone);
04159 }
04160 
04161 /*
04162  *  call-seq:
04163  *     time.gmt_offset -> fixnum
04164  *     time.gmtoff     -> fixnum
04165  *     time.utc_offset -> fixnum
04166  *
04167  *  Returns the offset in seconds between the timezone of <i>time</i>
04168  *  and UTC.
04169  *
04170  *     t = Time.gm(2000,1,1,20,15,1)   #=> 2000-01-01 20:15:01 UTC
04171  *     t.gmt_offset                    #=> 0
04172  *     l = t.getlocal                  #=> 2000-01-01 14:15:01 -0600
04173  *     l.gmt_offset                    #=> -21600
04174  */
04175 
04176 static VALUE
04177 time_utc_offset(VALUE time)
04178 {
04179     struct time_object *tobj;
04180 
04181     GetTimeval(time, tobj);
04182     MAKE_TM(time, tobj);
04183 
04184     if (TIME_UTC_P(tobj)) {
04185         return INT2FIX(0);
04186     }
04187     else {
04188         return tobj->vtm.utc_offset;
04189     }
04190 }
04191 
04192 /*
04193  *  call-seq:
04194  *     time.to_a -> array
04195  *
04196  *  Returns a ten-element <i>array</i> of values for <i>time</i>:
04197  *  {<code>[ sec, min, hour, day, month, year, wday, yday, isdst, zone
04198  *  ]</code>}. See the individual methods for an explanation of the
04199  *  valid ranges of each value. The ten elements can be passed directly
04200  *  to <code>Time::utc</code> or <code>Time::local</code> to create a
04201  *  new <code>Time</code>.
04202  *
04203  *     t = Time.now     #=> 2007-11-19 08:36:01 -0600
04204  *     now = t.to_a     #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"]
04205  */
04206 
04207 static VALUE
04208 time_to_a(VALUE time)
04209 {
04210     struct time_object *tobj;
04211 
04212     GetTimeval(time, tobj);
04213     MAKE_TM(time, tobj);
04214     return rb_ary_new3(10,
04215                     INT2FIX(tobj->vtm.sec),
04216                     INT2FIX(tobj->vtm.min),
04217                     INT2FIX(tobj->vtm.hour),
04218                     INT2FIX(tobj->vtm.mday),
04219                     INT2FIX(tobj->vtm.mon),
04220                     tobj->vtm.year,
04221                     INT2FIX(tobj->vtm.wday),
04222                     INT2FIX(tobj->vtm.yday),
04223                     tobj->vtm.isdst?Qtrue:Qfalse,
04224                     time_zone(time));
04225 }
04226 
04227 size_t
04228 rb_strftime(char *s, size_t maxsize, const char *format,
04229             const struct vtm *vtm, VALUE timev,
04230             int gmt);
04231 
04232 size_t
04233 rb_strftime_timespec(char *s, size_t maxsize, const char *format, const struct vtm *vtm, struct timespec *ts, int gmt);
04234 
04235 #define SMALLBUF 100
04236 static size_t
04237 rb_strftime_alloc(char **buf, const char *format,
04238                   struct vtm *vtm, wideval_t timew, int gmt)
04239 {
04240     size_t size, len, flen;
04241     VALUE timev = Qnil;
04242     struct timespec ts;
04243 
04244     if (!timew2timespec_exact(timew, &ts))
04245         timev = w2v(rb_time_unmagnify(timew));
04246 
04247     (*buf)[0] = '\0';
04248     flen = strlen(format);
04249     if (flen == 0) {
04250         return 0;
04251     }
04252     errno = 0;
04253     if (timev == Qnil)
04254         len = rb_strftime_timespec(*buf, SMALLBUF, format, vtm, &ts, gmt);
04255     else
04256         len = rb_strftime(*buf, SMALLBUF, format, vtm, timev, gmt);
04257     if (len != 0 || (**buf == '\0' && errno != ERANGE)) return len;
04258     for (size=1024; ; size*=2) {
04259         *buf = xmalloc(size);
04260         (*buf)[0] = '\0';
04261         if (timev == Qnil)
04262             len = rb_strftime_timespec(*buf, size, format, vtm, &ts, gmt);
04263         else
04264             len = rb_strftime(*buf, size, format, vtm, timev, gmt);
04265         /*
04266          * buflen can be zero EITHER because there's not enough
04267          * room in the string, or because the control command
04268          * goes to the empty string. Make a reasonable guess that
04269          * if the buffer is 1024 times bigger than the length of the
04270          * format string, it's not failing for lack of room.
04271          */
04272         if (len > 0 || size >= 1024 * flen) break;
04273         xfree(*buf);
04274     }
04275     return len;
04276 }
04277 
04278 static VALUE
04279 strftimev(const char *fmt, VALUE time)
04280 {
04281     struct time_object *tobj;
04282     char buffer[SMALLBUF], *buf = buffer;
04283     long len;
04284     VALUE str;
04285 
04286     GetTimeval(time, tobj);
04287     MAKE_TM(time, tobj);
04288     len = rb_strftime_alloc(&buf, fmt, &tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
04289     str = rb_str_new(buf, len);
04290     if (buf != buffer) xfree(buf);
04291     return str;
04292 }
04293 
04294 /*
04295  *  call-seq:
04296  *     time.strftime( string ) -> string
04297  *
04298  *  Formats <i>time</i> according to the directives in the given format
04299  *  string. Any text not listed as a directive will be passed through
04300  *  to the output string.
04301  *
04302  *  Format meaning:
04303  *    %a - The abbreviated weekday name (``Sun'')
04304  *    %A - The  full  weekday  name (``Sunday'')
04305  *    %b - The abbreviated month name (``Jan'')
04306  *    %B - The  full  month  name (``January'')
04307  *    %c - The preferred local date and time representation
04308  *    %C - Century (20 in 2009)
04309  *    %d - Day of the month (01..31)
04310  *    %D - Date (%m/%d/%y)
04311  *    %e - Day of the month, blank-padded ( 1..31)
04312  *    %F - Equivalent to %Y-%m-%d (the ISO 8601 date format)
04313  *    %h - Equivalent to %b
04314  *    %H - Hour of the day, 24-hour clock (00..23)
04315  *    %I - Hour of the day, 12-hour clock (01..12)
04316  *    %j - Day of the year (001..366)
04317  *    %k - hour, 24-hour clock, blank-padded ( 0..23)
04318  *    %l - hour, 12-hour clock, blank-padded ( 0..12)
04319  *    %L - Millisecond of the second (000..999)
04320  *    %m - Month of the year (01..12)
04321  *    %M - Minute of the hour (00..59)
04322  *    %n - Newline (\n)
04323  *    %N - Fractional seconds digits, default is 9 digits (nanosecond)
04324  *            %3N  millisecond (3 digits)
04325  *            %6N  microsecond (6 digits)
04326  *            %9N  nanosecond (9 digits)
04327  *    %p - Meridian indicator (``AM''  or  ``PM'')
04328  *    %P - Meridian indicator (``am''  or  ``pm'')
04329  *    %r - time, 12-hour (same as %I:%M:%S %p)
04330  *    %R - time, 24-hour (%H:%M)
04331  *    %s - Number of seconds since 1970-01-01 00:00:00 UTC.
04332  *    %S - Second of the minute (00..60)
04333  *    %t - Tab character (\t)
04334  *    %T - time, 24-hour (%H:%M:%S)
04335  *    %u - Day of the week as a decimal, Monday being 1. (1..7)
04336  *    %U - Week  number  of the current year,
04337  *            starting with the first Sunday as the first
04338  *            day of the first week (00..53)
04339  *    %v - VMS date (%e-%b-%Y)
04340  *    %V - Week number of year according to ISO 8601 (01..53)
04341  *    %W - Week  number  of the current year,
04342  *            starting with the first Monday as the first
04343  *            day of the first week (00..53)
04344  *    %w - Day of the week (Sunday is 0, 0..6)
04345  *    %x - Preferred representation for the date alone, no time
04346  *    %X - Preferred representation for the time alone, no date
04347  *    %y - Year without a century (00..99)
04348  *    %Y - Year with century
04349  *    %z - Time zone as  hour offset from UTC (e.g. +0900)
04350  *    %Z - Time zone name
04351  *    %% - Literal ``%'' character
04352  *
04353  *     t = Time.now                        #=> 2007-11-19 08:37:48 -0600
04354  *     t.strftime("Printed on %m/%d/%Y")   #=> "Printed on 11/19/2007"
04355  *     t.strftime("at %I:%M%p")            #=> "at 08:37AM"
04356  */
04357 
04358 static VALUE
04359 time_strftime(VALUE time, VALUE format)
04360 {
04361     void rb_enc_copy(VALUE, VALUE);
04362     struct time_object *tobj;
04363     char buffer[SMALLBUF], *buf = buffer;
04364     const char *fmt;
04365     long len;
04366     VALUE str;
04367 
04368     GetTimeval(time, tobj);
04369     MAKE_TM(time, tobj);
04370     StringValue(format);
04371     if (!rb_enc_str_asciicompat_p(format)) {
04372         rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
04373     }
04374     format = rb_str_new4(format);
04375     fmt = RSTRING_PTR(format);
04376     len = RSTRING_LEN(format);
04377     if (len == 0) {
04378         rb_warning("strftime called with empty format string");
04379     }
04380     else if (memchr(fmt, '\0', len)) {
04381         /* Ruby string may contain \0's. */
04382         const char *p = fmt, *pe = fmt + len;
04383 
04384         str = rb_str_new(0, 0);
04385         while (p < pe) {
04386             len = rb_strftime_alloc(&buf, p, &tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
04387             rb_str_cat(str, buf, len);
04388             p += strlen(p);
04389             if (buf != buffer) {
04390                 xfree(buf);
04391                 buf = buffer;
04392             }
04393             for (fmt = p; p < pe && !*p; ++p);
04394             if (p > fmt) rb_str_cat(str, fmt, p - fmt);
04395         }
04396         return str;
04397     }
04398     else {
04399         len = rb_strftime_alloc(&buf, RSTRING_PTR(format),
04400                                 &tobj->vtm, tobj->timew, TIME_UTC_P(tobj));
04401     }
04402     str = rb_str_new(buf, len);
04403     if (buf != buffer) xfree(buf);
04404     rb_enc_copy(str, format);
04405     return str;
04406 }
04407 
04408 /*
04409  * undocumented
04410  */
04411 
04412 static VALUE
04413 time_mdump(VALUE time)
04414 {
04415     struct time_object *tobj;
04416     unsigned long p, s;
04417     char buf[8];
04418     int i;
04419     VALUE str;
04420 
04421     struct vtm vtm;
04422     long year;
04423     long usec, nsec;
04424     VALUE subsecx, nano, subnano, v;
04425 
04426     GetTimeval(time, tobj);
04427 
04428     gmtimew(tobj->timew, &vtm);
04429 
04430     if (FIXNUM_P(vtm.year)) {
04431         year = FIX2LONG(vtm.year);
04432         if (year < 1900 || 1900+0xffff < year)
04433             rb_raise(rb_eArgError, "year too big to marshal: %ld UTC", year);
04434     }
04435     else {
04436         rb_raise(rb_eArgError, "year too big to marshal");
04437     }
04438 
04439     subsecx = vtm.subsecx;
04440 
04441     nano = mulquo(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
04442     divmodv(nano, INT2FIX(1), &v, &subnano);
04443     nsec = FIX2LONG(v);
04444     usec = nsec / 1000;
04445     nsec = nsec % 1000;
04446 
04447     nano = add(LONG2FIX(nsec), subnano);
04448 
04449     p = 0x1UL            << 31 | /*  1 */
04450         TIME_UTC_P(tobj) << 30 | /*  1 */
04451         (year-1900)      << 14 | /* 16 */
04452         (vtm.mon-1)      << 10 | /*  4 */
04453         vtm.mday         <<  5 | /*  5 */
04454         vtm.hour;                /*  5 */
04455     s = vtm.min          << 26 | /*  6 */
04456         vtm.sec          << 20 | /*  6 */
04457         usec;    /* 20 */
04458 
04459     for (i=0; i<4; i++) {
04460         buf[i] = (unsigned char)p;
04461         p = RSHIFT(p, 8);
04462     }
04463     for (i=4; i<8; i++) {
04464         buf[i] = (unsigned char)s;
04465         s = RSHIFT(s, 8);
04466     }
04467 
04468     str = rb_str_new(buf, 8);
04469     rb_copy_generic_ivar(str, time);
04470     if (!rb_equal(nano, INT2FIX(0))) {
04471         if (TYPE(nano) == T_RATIONAL) {
04472             rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
04473             rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
04474         }
04475         else {
04476             rb_ivar_set(str, id_nano_num, nano);
04477             rb_ivar_set(str, id_nano_den, INT2FIX(1));
04478         }
04479     }
04480     if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
04481         /*
04482          * submicro is formatted in fixed-point packed BCD (without sign).
04483          * It represent digits under microsecond.
04484          * For nanosecond resolution, 3 digits (2 bytes) are used.
04485          * However it can be longer.
04486          * Extra digits are ignored for loading.
04487          */
04488         char buf[2];
04489         int len = (int)sizeof(buf);
04490         buf[1] = (char)((nsec % 10) << 4);
04491         nsec /= 10;
04492         buf[0] = (char)(nsec % 10);
04493         nsec /= 10;
04494         buf[0] |= (char)((nsec % 10) << 4);
04495         if (buf[1] == 0)
04496             len = 1;
04497         rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
04498     }
04499     if (!TIME_UTC_P(tobj)) {
04500         VALUE off = time_utc_offset(time), div, mod;
04501         divmodv(off, INT2FIX(1), &div, &mod);
04502         if (rb_equal(mod, INT2FIX(0)))
04503             off = rb_Integer(div);
04504         rb_ivar_set(str, id_offset, off);
04505     }
04506     return str;
04507 }
04508 
04509 /*
04510  * call-seq:
04511  *   time._dump   -> string
04512  *
04513  * Dump _time_ for marshaling.
04514  */
04515 
04516 static VALUE
04517 time_dump(int argc, VALUE *argv, VALUE time)
04518 {
04519     VALUE str;
04520 
04521     rb_scan_args(argc, argv, "01", 0);
04522     str = time_mdump(time);
04523 
04524     return str;
04525 }
04526 
04527 /*
04528  * undocumented
04529  */
04530 
04531 static VALUE
04532 time_mload(VALUE time, VALUE str)
04533 {
04534     struct time_object *tobj;
04535     unsigned long p, s;
04536     time_t sec;
04537     long usec;
04538     unsigned char *buf;
04539     struct vtm vtm;
04540     int i, gmt;
04541     long nsec;
04542     VALUE submicro, nano_num, nano_den, offset;
04543     wideval_t timew;
04544 
04545     time_modify(time);
04546 
04547     nano_num = rb_attr_get(str, id_nano_num);
04548     if (nano_num != Qnil) {
04549         st_delete(rb_generic_ivar_table(str), (st_data_t*)&id_nano_num, 0);
04550     }
04551     nano_den = rb_attr_get(str, id_nano_den);
04552     if (nano_den != Qnil) {
04553         st_delete(rb_generic_ivar_table(str), (st_data_t*)&id_nano_den, 0);
04554     }
04555     submicro = rb_attr_get(str, id_submicro);
04556     if (submicro != Qnil) {
04557         st_delete(rb_generic_ivar_table(str), (st_data_t*)&id_submicro, 0);
04558     }
04559     offset = rb_attr_get(str, id_offset);
04560     if (offset != Qnil) {
04561         validate_utc_offset(offset);
04562         st_delete(rb_generic_ivar_table(str), (st_data_t*)&id_offset, 0);
04563     }
04564     rb_copy_generic_ivar(time, str);
04565 
04566     StringValue(str);
04567     buf = (unsigned char *)RSTRING_PTR(str);
04568     if (RSTRING_LEN(str) != 8) {
04569         rb_raise(rb_eTypeError, "marshaled time format differ");
04570     }
04571 
04572     p = s = 0;
04573     for (i=0; i<4; i++) {
04574         p |= buf[i]<<(8*i);
04575     }
04576     for (i=4; i<8; i++) {
04577         s |= buf[i]<<(8*(i-4));
04578     }
04579 
04580     if ((p & (1UL<<31)) == 0) {
04581         gmt = 0;
04582         offset = Qnil;
04583         sec = p;
04584         usec = s;
04585         nsec = usec * 1000;
04586         timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
04587     }
04588     else {
04589         p &= ~(1UL<<31);
04590         gmt        = (int)((p >> 30) & 0x1);
04591 
04592         vtm.year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
04593         vtm.mon  = ((int)(p >> 10) & 0xf) + 1;
04594         vtm.mday = (int)(p >>  5) & 0x1f;
04595         vtm.hour = (int) p        & 0x1f;
04596         vtm.min  = (int)(s >> 26) & 0x3f;
04597         vtm.sec  = (int)(s >> 20) & 0x3f;
04598         vtm.utc_offset = INT2FIX(0);
04599         vtm.yday = vtm.wday = 0;
04600         vtm.isdst = 0;
04601         vtm.zone = "";
04602 
04603         usec = (long)(s & 0xfffff);
04604         nsec = usec * 1000;
04605 
04606 
04607         vtm.subsecx = mulquo(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
04608         if (nano_num != Qnil) {
04609             VALUE nano = quo(num_exact(nano_num), num_exact(nano_den));
04610             vtm.subsecx = add(vtm.subsecx, mulquo(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
04611         }
04612         else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
04613             unsigned char *ptr;
04614             long len;
04615             int digit;
04616             ptr = (unsigned char*)StringValuePtr(submicro);
04617             len = RSTRING_LEN(submicro);
04618             nsec = 0;
04619             if (0 < len) {
04620                 if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
04621                 nsec += digit * 100;
04622                 if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
04623                 nsec += digit * 10;
04624             }
04625             if (1 < len) {
04626                 if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
04627                 nsec += digit;
04628             }
04629             vtm.subsecx = add(vtm.subsecx, mulquo(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
04630 end_submicro: ;
04631         }
04632         timew = timegmw(&vtm);
04633     }
04634 
04635     GetTimeval(time, tobj);
04636     tobj->tm_got = 0;
04637     tobj->timew = timew;
04638     if (gmt) {
04639         TIME_SET_UTC(tobj);
04640     }
04641     else if (!NIL_P(offset)) {
04642         time_set_utc_offset(time, offset);
04643         time_fixoff(time);
04644     }
04645 
04646     return time;
04647 }
04648 
04649 /*
04650  * call-seq:
04651  *   Time._load(string)   -> time
04652  *
04653  * Unmarshal a dumped +Time+ object.
04654  */
04655 
04656 static VALUE
04657 time_load(VALUE klass, VALUE str)
04658 {
04659     VALUE time = time_s_alloc(klass);
04660 
04661     time_mload(time, str);
04662     return time;
04663 }
04664 
04665 /*
04666  *  <code>Time</code> is an abstraction of dates and times. Time is
04667  *  stored internally as the number of seconds with fraction since
04668  *  the <em>Epoch</em>, January 1, 1970 00:00 UTC.
04669  *  Also see the library modules <code>Date</code>.
04670  *  The <code>Time</code> class treats GMT (Greenwich Mean Time) and
04671  *  UTC (Coordinated Universal Time)<em>[Yes, UTC really does stand for
04672  *  Coordinated Universal Time. There was a committee involved.]</em>
04673  *  as equivalent.  GMT is the older way of referring to these
04674  *  baseline times but persists in the names of calls on POSIX
04675  *  systems.
04676  *
04677  *  All times may have fraction. Be aware of
04678  *  this fact when comparing times with each other---times that are
04679  *  apparently equal when displayed may be different when compared.
04680  */
04681 
04682 void
04683 Init_Time(void)
04684 {
04685 #undef rb_intern
04686 #define rb_intern(str) rb_intern_const(str)
04687 
04688     id_eq = rb_intern("==");
04689     id_ne = rb_intern("!=");
04690     id_quo = rb_intern("quo");
04691     id_div = rb_intern("div");
04692     id_cmp = rb_intern("<=>");
04693     id_lshift = rb_intern("<<");
04694     id_divmod = rb_intern("divmod");
04695     id_mul = rb_intern("*");
04696     id_submicro = rb_intern("submicro");
04697     id_nano_num = rb_intern("nano_num");
04698     id_nano_den = rb_intern("nano_den");
04699     id_offset = rb_intern("offset");
04700 
04701     rb_cTime = rb_define_class("Time", rb_cObject);
04702     rb_include_module(rb_cTime, rb_mComparable);
04703 
04704     rb_define_alloc_func(rb_cTime, time_s_alloc);
04705     rb_define_singleton_method(rb_cTime, "now", time_s_now, 0);
04706     rb_define_singleton_method(rb_cTime, "at", time_s_at, -1);
04707     rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
04708     rb_define_singleton_method(rb_cTime, "gm", time_s_mkutc, -1);
04709     rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
04710     rb_define_singleton_method(rb_cTime, "mktime", time_s_mktime, -1);
04711 
04712     rb_define_method(rb_cTime, "to_i", time_to_i, 0);
04713     rb_define_method(rb_cTime, "to_f", time_to_f, 0);
04714     rb_define_method(rb_cTime, "to_r", time_to_r, 0);
04715     rb_define_method(rb_cTime, "<=>", time_cmp, 1);
04716     rb_define_method(rb_cTime, "eql?", time_eql, 1);
04717     rb_define_method(rb_cTime, "hash", time_hash, 0);
04718     rb_define_method(rb_cTime, "initialize", time_init, -1);
04719     rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
04720 
04721     rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
04722     rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
04723     rb_define_method(rb_cTime, "utc", time_gmtime, 0);
04724     rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
04725     rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
04726     rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
04727 
04728     rb_define_method(rb_cTime, "ctime", time_asctime, 0);
04729     rb_define_method(rb_cTime, "asctime", time_asctime, 0);
04730     rb_define_method(rb_cTime, "to_s", time_to_s, 0);
04731     rb_define_method(rb_cTime, "inspect", time_to_s, 0);
04732     rb_define_method(rb_cTime, "to_a", time_to_a, 0);
04733 
04734     rb_define_method(rb_cTime, "+", time_plus, 1);
04735     rb_define_method(rb_cTime, "-", time_minus, 1);
04736 
04737     rb_define_method(rb_cTime, "succ", time_succ, 0);
04738     rb_define_method(rb_cTime, "round", time_round, -1);
04739 
04740     rb_define_method(rb_cTime, "sec", time_sec, 0);
04741     rb_define_method(rb_cTime, "min", time_min, 0);
04742     rb_define_method(rb_cTime, "hour", time_hour, 0);
04743     rb_define_method(rb_cTime, "mday", time_mday, 0);
04744     rb_define_method(rb_cTime, "day", time_mday, 0);
04745     rb_define_method(rb_cTime, "mon", time_mon, 0);
04746     rb_define_method(rb_cTime, "month", time_mon, 0);
04747     rb_define_method(rb_cTime, "year", time_year, 0);
04748     rb_define_method(rb_cTime, "wday", time_wday, 0);
04749     rb_define_method(rb_cTime, "yday", time_yday, 0);
04750     rb_define_method(rb_cTime, "isdst", time_isdst, 0);
04751     rb_define_method(rb_cTime, "dst?", time_isdst, 0);
04752     rb_define_method(rb_cTime, "zone", time_zone, 0);
04753     rb_define_method(rb_cTime, "gmtoff", time_utc_offset, 0);
04754     rb_define_method(rb_cTime, "gmt_offset", time_utc_offset, 0);
04755     rb_define_method(rb_cTime, "utc_offset", time_utc_offset, 0);
04756 
04757     rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
04758     rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
04759 
04760     rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
04761     rb_define_method(rb_cTime, "monday?", time_monday, 0);
04762     rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
04763     rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
04764     rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
04765     rb_define_method(rb_cTime, "friday?", time_friday, 0);
04766     rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
04767 
04768     rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
04769     rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
04770     rb_define_method(rb_cTime, "usec", time_usec, 0);
04771     rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
04772     rb_define_method(rb_cTime, "nsec", time_nsec, 0);
04773     rb_define_method(rb_cTime, "subsec", time_subsec, 0);
04774 
04775     rb_define_method(rb_cTime, "strftime", time_strftime, 1);
04776 
04777     /* methods for marshaling */
04778     rb_define_method(rb_cTime, "_dump", time_dump, -1);
04779     rb_define_singleton_method(rb_cTime, "_load", time_load, 1);
04780 #if 0
04781     /* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
04782     rb_define_method(rb_cTime, "marshal_dump", time_mdump, 0);
04783     rb_define_method(rb_cTime, "marshal_load", time_mload, 1);
04784 #endif
04785 
04786 #ifdef DEBUG_FIND_TIME_NUMGUESS
04787     rb_define_virtual_variable("$find_time_numguess", find_time_numguess_getter, NULL);
04788 #endif
04789 }
04790 

Generated on Wed Sep 8 2010 09:56:19 for Ruby by  doxygen 1.7.1