
Ksplice: An automatic system for rebootless Linux kernel security updates

Jeffrey Brian Arnold
Massachusetts Institute of Technology

jbarnold@mit.edu

Abstract
Ksplice∗ allows system administrators to apply security
patches to their operating system kernels without having
to reboot. Ksplice takes as input a source code change
in the standard patch format and the kernel source code
to be patched, and it applies the patch to the correspond-
ing running kernel. To be fully automatic, Ksplice’s de-
sign is limited to patches that do not introduce seman-
tic changes to data structures, but a study of Linux se-
curity patches from May 2005 to December 2007 finds
that only eight patches of 50 make semantic changes.
An evaluation with Debian kernels and kernel.org ker-
nels shows that Ksplice can automatically apply the re-
maining 42 patches, which means that 84% of the ker-
nel vulnerabilities from this interval can be corrected by
Ksplice without the need for rebooting.

1 Introduction
Several contemporary operating systems, including
Linux, release kernel security patches many times per
year. Some of these kernel patches repair vulnerabili-
ties which would otherwise potentially allow an attacker
to gain full administrator privileges on the operating sys-
tem. Applying these security patches typically requires
rebooting the kernel, which results in downtime and loss
of state (e.g., all active network connections). Since re-
booting can cause disruption, system administrators of-
ten delay performing security updates, despite the risk
of compromises. This paper describes and evaluates
Ksplice, a system for performing hot updates, which
change a running kernel without rebooting it.

When software developers correct a security problem
in the source code of a C program, they create and dis-
tribute a patch, which consists of a set of changes to the

∗Ksplice is free software, and its documentation is free.
You can redistribute and/or modify this document under the
terms of the GNU General Public License, version 2. See
http://web.mit.edu/ksplice for more information.

source code, often expressed in the GNU unified diff for-
mat [8]. In the case of the Linux kernel, system admin-
istrators apply the patch to their copy of the source code,
build a new kernel, and then distribute that new binary
kernel to servers and end-user machines, which must be
rebooted in order to run the new kernel.

Ksplice can, without restarting the kernel, apply any
source code patch that only needs to modify the kernel
text. Unlike other hot update systems, Ksplice takes as
input only a unified diff and the original kernel source
code, and it updates the running kernel correctly, with no
further human assistance required.

Additionally, taking advantage of Ksplice does not
require any preparation before the system is originally
booted (the running kernel does not need to have been
specially compiled, for example). Other systems re-
quire a special kernel design that is conducive to hot up-
dates [3, 4], require a customized compiler [1, 16], or
require a virtual machine monitor [6].

Unlike some existing hot update systems, Ksplice can-
not handle semantic changes to data structures—that is,
changes that would require existing instances of kernel
data structures to be transformed (e.g., a patch that adds
a field to a global data structure would require the exist-
ing data structures to change). We examined 32 months
of Linux kernel patches and found that most (42 out of
50) kernel security patches do not require such seman-
tic changes. This design choice avoids burdening the hot
update creator with writing code to transform the origi-
nal kernel data structures to the state expected by the new
code. An imperfect state transformation function could
lead to disastrous consequences, so avoiding this source
of effort and potential for human error makes sense until
hot update systems are more widely deployed.

Ksplice takes as input source code, but it determines
what has changed by comparing the compiled, binary im-
ages corresponding to the original kernel source and the
patched kernel source. The advantage of this approach is
that Ksplice can avoid parsing and understanding C, can

1



update assembly-enhanced parts of the kernel, and has
no external dependencies except upon standards such as
the Executable and Linkable Format (ELF) [10] and the
well-established GNU Binary File Descriptor (BFD) li-
brary [5] (which is used extensively by the GNU binary
utilities, including the GNU linker ld). This binary-level
perspective also helps Ksplice to avoid an inline function
vulnerability that affects other hot update systems, and
it helps Ksplice to correctly resolve symbols in difficult
situations.

Ksplice’s binary-level approach and its generation of
updates directly from a unified diff make it more de-
sirable to adopt, but these design choices require spe-
cial techniques for identifying exactly what was changed
by the patch and for successfully constructing an up-
date. Ksplice must distinguish the binary differences
caused by the patch from extraneous differences, must
appropriately handle nondeterministic compiler behav-
ior, and must automatically resolve symbol name con-
flicts. Ksplice achieves these goals by carefully lever-
aging compiler guarantees, by using its own custom re-
location procedure, and by using a special binary-level
comparison technique to obtain information from the to-
be-updated kernel.

The performance impact of inserting a Ksplice update
into a kernel is minimal. A small amount of additional
kernel memory, proportional to the size of the replace-
ment functions, will be expended, and function calls to
the replaced functions will take a few cycles longer for
the additional jump instruction associated with the tram-
poline. On modern systems, this overhead should be neg-
ligible under most circumstances.

Although generating a Ksplice hot update from a com-
patible patch requires no human effort, Ksplice requires
a person to perform a single check before invoking
Ksplice: a person is expected to confirm that the target
security patch does not make any semantic changes to
data structures. Performing this check requires only sec-
onds or a few minutes for most security patches.

We implemented Ksplice for the Linux kernel, but the
techniques that Ksplice employs should translate well
to other operating systems. To evaluate Ksplice’s ap-
proach, we applied Ksplice to 50 Linux patches for ker-
nel security vulnerabilities from May 2005 to December
2007. The 50 include all documented x86-32 Linux ker-
nel vulnerabilities from this time interval with greater
consequences than denial of service. We applied the
patches to five different running Debian kernels and six
different running kernel.org kernels. Of the 50 patches,
eight make semantic changes and cannot be applied by
Ksplice. The remaining 42 of the 50 patches can be
applied using Ksplice without the need for rebooting,
which is a significant advance over the current state in
which system administrators always have to reboot their

Table 1: Number of vulnerabilities by type

Type of Vulnerability Quantity
Privilege escalation 32
Read kernel memory 10
Failure to clear memory 5
Other information disclosure 3

machines.
The rest of this paper is organized as follows: The next

section examines 32 months of Linux kernel security vul-
nerabilities and the corresponding security patches re-
leased to resolve these problems. Section 3 presents
Ksplice’s design for performing hot kernel updates. Sec-
tion 4 describes Linux-specific implementation consider-
ations. Section 5 tests Ksplice against security patches
from May 2005 to December 2007. Section 6 relates
Ksplice to previous work. Section 7 summarizes our con-
clusions and directions for future work.

2 Linux security patches
In order to understand typical security problems and the
patches that the Linux developer community releases to
resolve them, we compiled a list of significant Linux
2.6.x kernel security problems from May 2005 to De-
cember 2007. We compiled this list of vulnerabilities
and the corresponding patches by matching entries in
the Common Vulnerabilities and Exposures (CVE) vul-
nerability list [7] against the GIT source control logs of
Linus Torvalds’ branch of the Linux kernel source [14].
Only security problems that could result in greater conse-
quences than denial of service are included on this Linux
kernel vulnerability list; specifically, all of the vulner-
abilities on the list involve the potential for some kind
of privilege escalation or unintended information disclo-
sure. We excluded from this list any architecture-specific
vulnerabilities that do not affect the x86-32 architecture.

In this time interval, 50 significant x86-32 Linux ker-
nel vulnerabilities were reported, which are listed in a de-
tailed table in the Appendix and summarized in Table 1
and Figure 1. Roughly one-third of the kernel vulner-
abilities primarily involved information disclosure, and
the rest potentially allowed for some kind of privilege
escalation.

The frequency of new vulnerabilities with the poten-
tial for privilege escalation—about one vulnerability per
month—is consistent with the conventional wisdom that
the Linux kernel must be updated frequently in order to
be secure against attack from users with local accounts
on the system. Protecting against this kind of attack can
be important even on systems where all of the people

2



Figure 1: Number of patches by patch length

 0

 5

 10

 15

 20

 25

 30

∞80757065605550454035302520151050

N
um

be
r 

of
 p

at
ch

es

Lines of code in the patch

with accounts are trustworthy, since a network attacker
can commonly access a user account by compromising a
password or ordinary program. In these situations, hav-
ing an up-to-date kernel can mean the difference between
whether an attacker gains limited access to a system or
full control over it.

Figure 1 shows that most Linux kernel security vul-
nerabilities can be corrected by modifying relatively few
lines of source code. Of the 50 patched vulnerabilities
discussed above, 40 vulnerabilities were corrected in 15
or fewer lines of source code changes, and 30 vulnerabil-
ities were corrected in 5 or fewer lines of changes.

Reviewing the text of these patches reveals that most
Linux kernel vulnerabilities can be fully corrected with-
out making any semantic changes to the kernel’s global,
dynamically-allocated, or static local data structures. We
collectively refer to these data structures as the kernel’s
“long-lived” data structures. Since these data structures
do not need to change in order to accommodate most
patches, many security updates can be applied to a run-
ning system by simply updating the text of the kernel.

3 Design
To apply a patch, Ksplice replaces all of the functions
that the patch changes. If any code within a function
is patched, then Ksplice will replace the entire function.
Ksplice replaces a function by linking the patched ver-
sion of the function into the kernel’s address space and
by causing all callers of the original function to invoke
the patched version. Ksplice replaces entire functions
since they tend to have a well-defined entry point, at the
beginning of the function, which is convenient for redi-
recting execution flow away from an obsolete function to
a replacement function.

Although replacing entire functions is relatively con-

Figure 2: Ksplice’s process for creating a hot update

venient, this replacement must be done with care. It
involves generating the object code for the patched
function, resolving symbols in the object code of the
patched function, stopping the kernel temporarily, rewrit-
ing the initial instructions in the obsolete function to
point callers at the patched function, and starting the ker-
nel again. The rest of the section discusses how Ksplice
performs these operations.

3.1 Overview

Ksplice accepts as input the original kernel source code
and a source code patch. Through a multi-stage process,
Ksplice uses this input to create a kernel module that
contains the patched functions (see Figure 2). Most of
the stages of this process make few assumptions about
the underlying operating system. The design assumes
a reasonable binary format for object code and a facil-
ity for kernel modules. Ksplice’s implementation works
with the Executable and Linkable Format (ELF) [10] and
Linux’s kernel module framework. Many other UNIX
operating systems, such as the major BSD distributions
and Solaris, use the ELF format extensively and accom-
modate kernel modules.

In order to generate a hot update, Ksplice must deter-

3



mine what code within the kernel has been changed by
the source code patch. Ksplice performs this analysis at
the ELF object code layer, rather than at the C source
code layer, for two reasons.

First, operating at the object code layer allows the
C compiler to perform the work of parsing the C lan-
guage. Other hot update systems parse C by modifying
a mainstream C compiler [1] or by relying upon a re-
search C parser [16], such as the C Intermediate Lan-
guage tools [17]. Modifying a mainstream C compiler
creates a dependency upon that version of that compiler
and can make a hot update system more difficult to main-
tain over time. Using a research C parser creates a de-
pendency upon a software system that is not widely used
and that does not necessarily support all of the C exten-
sions needed to compile the code in question. Operating
at the object code layer and relying upon the GNU BFD
library, which is widely used by the popular GNU binary
utilities, does not have these disadvantages.

Second, Ksplice’s binary comparison techniques avoid
a subtle problem with inline functions. This problem af-
fects other hot update systems that, like Ksplice, are de-
signed to update mostly-unmodified programs. Compil-
ers will sometimes inline a function in some places and
not inline it in others, which can lead to a hot update
system thinking that it replaced the only copy of a func-
tion, while other inline copies still exist and contain the
outdated code. This problem cannot trivially be avoided
without doing some kind of binary comparison since any
function can potentially be inlined by the compiler.

In order to understand the effect of a source code patch
on the kernel, Ksplice performs two kernel builds and
looks at how the resulting ELF object files differ. Ksplice
builds the original unmodified kernel source in a direc-
tory tree that we will refer to as the pre tree. Next,
Ksplice copies this directory tree into a new location and
applies the source code patch. We refer to this patched
directory tree as the post tree. Ksplice then performs a
build of the post tree, which recompiles any object files
whose constituent source files have been changed by the
source code patch. Ksplice compares the pre and post
object file trees in order to determine which functions
were changed by the patch. It extracts the changed func-
tions from the post tree and puts them into an object file.

Ksplice then creates a kernel module by combining
this object file with generic code for performing hot up-
dates. A system administrator can then insert the kernel
module into the kernel using the operating system’s stan-
dard kernel module facility. After the kernel has loaded
and initialized the hot update, the hot update will locate
entry point symbols in the running kernel’s memory and
insert trampolines at those locations. These trampolines
will direct execution away from the vulnerable code to
new code, located elsewhere, that has been loaded into

kernel memory as part of the hot update.
The kernel module generated by Ksplice is not

machine-specific and may be used on any machine run-
ning a kernel compiled from the same original kernel
source code. The patch can easily be reversed by running
a user space program that communicates with the mod-
ule. Reversing the patch involves removing the trampo-
lines so that the original function text is once again exe-
cuted.

3.2 Challenges
To make the described design work in practice, there are
several challenges that Ksplice must address:

• Avoiding extraneous differences. The correspond-
ing pre and post object files will contain many dif-
ferences that are only tangentially related to the
source code patch. As an example, the GNU C
compiler [18] will, by default, lay out an entire ob-
ject file’s executable text within a single ELF sec-
tion named .text, and the C compiler will there-
fore generate much code within this section that
performs relative jumps to other addresses within
this ELF section. If a single function within an
object file is changed in length as a result of the
source code patch, then many relative jump off-
sets throughout the entire object file will potentially
change as a result of what was originally a simple
change to a single function.

• Determining entry points. Most C functions have
one entry point, but assembly-enhanced parts of the
kernel can have several.

• Resolving symbols to kernel addresses. We must
use our own mechanism for performing relocations,
rather than the kernel’s provided mechanism, be-
cause we need to allow the post code that is being
relocated to reference local functions and data struc-
tures. For example, we need to allow the replace-
ment code to reference the static local variables of
existing functions. The kernel symbol table con-
tains entries for local symbols in addition to global
symbols, but the kernel’s provided relocation sys-
tem only considers global symbols eligible for ful-
filling relocations.

• Handling ambiguous or missing symbols. Attempt-
ing to resolve symbols based on the names in the
kernel’s symbol table can commonly cause prob-
lems when a symbol name appears more than once
or does not appear at all. For example, the re-
placement code might reference a function by the
name translate table, and two or more local

4



symbols with that name might appear in the ker-
nel. In this situation, the hot update system needs
a way of determining which translate table
address should be used to fulfill this relocation.

• Handling compiler differences. The compiler used
to generate the hot update may not behave the same
as the compiler used to compile the original kernel.
The pre code could therefore be different from the
code in the running kernel, which we will refer to as
the run version of the machine code. These differ-
ences could cause various serious problems with the
hot update process, such as causing the hot update
to neglect to update sections of vulnerable code.
Consider the situation in which a patched function
(patched func) is called from a non-patched
function (calling func) that is within the same
compilation unit. Assume that, in the run code, the
compiler decided to inline calling func’s call
to patched func. If, in the pre and post code,
the compiler chooses to have calling func per-
form a call to patched func rather than making
the call be inline, then the pre and post code for
calling func will be identical. As a result, the
system would not think that calling func needs
to be replaced in the running kernel. One would
not expect this kind of situation to arise often, but
silently failing to update sections of vulnerable code
is unacceptable even in rare circumstances.

• Finding a safe time to update. After the hot update
module has been inserted into the kernel, the system
must find an appropriate time to insert the trampo-
lines and thereby switch over to using the replace-
ment functions. In order for Ksplice to be able to
safely replace a function, that function should not
be in the middle of being executed by any thread
on the system. Consider a situation in which one
patched function (calling func) calls another
patched function (called func). If the patch
changes the interface between calling func
and called func in any way, then it could be im-
portant to ensure that the obsolete calling func
only calls the obsolete called func. Unfortu-
nately, if calling func is in the middle of being
executed when called func has its trampoline
inserted, then the obsolete calling func could
call the replacement called func. This incorrect
call could cause serious problems.

• Patching a previously-patched kernel. After one
hot update has been applied to a running system,
safely applying additional hot updates to that sys-
tem should remain possible.

The rest of this section describes how Ksplice addresses
these challenges.

3.3 Handling extraneous differences
In order to identify a more minimal set of changes caused
by the source code patch, Ksplice would like to be able
to generate object code that makes no assumptions in its
executable text about where functions are positioned in
memory. Avoiding these function layout assumptions is
also useful for generating the replacement code for the
hot update.

To reduce location assumptions, all of Ksplice’s ker-
nel builds are performed with certain compiler options
enabled to ensure that every C function and data struc-
ture within the kernel receives its own dedicated ELF
section within the resulting ELF object files. These
options, which are included in the standard GNU C
compiler but are disabled by default, are known as
-ffunction-sections and -fdata-sections.
Enabling these options forces the compiler to generate
relocations for functions and data structures, which re-
sults in more general code that does not make assump-
tions about where functions and data structures are lo-
cated in memory. Instead, the resulting object code
contains more general assembly instructions along with
ELF relocation entries so that arbitrary addresses can be
plugged-in for functions and data structures at a later
time.

When compiling with these options, kernel functions
that have not been directly changed by the source code
patch will often have identical ELF sections in the pre
and post kernel trees. For various reasons, such as non-
deterministic compiler optimizations, some of the result-
ing ELF sections could differ in places not caused by the
source code patch, but such differences are unusual, diffi-
cult to avoid, and harmless. Although Ksplice would like
to replace as few functions as possible, we can safely re-
place a function with a different binary representation of
the same original source code, even if doing so is unnec-
essary.

3.4 Determining entry points
After determining what ELF sections differ between the
pre and post trees, Ksplice generates a list of all of the
entry points to those ELF text sections. Every ELF sym-
bol pointing into a text section is considered a potential
entry point to that section. C functions typically have
one entry point at the start of the function, but assembly
code can result in an ELF section having multiple entry
points. Looking for an arbitrary number of entry points
per ELF section allows Ksplice to handle patches to cer-
tain assembly-enhanced parts of the kernel that Ksplice

5



would not otherwise be able to handle.

3.5 Resolving symbols to kernel addresses
In order to implement its own symbol resolution mech-
anism, which looks at both local and global symbols,
Ksplice removes the original ELF relocation entries
present in the ELF object files so that the kernel’s loader
will not recognize the ELF relocations and try to fulfill
them. Instead, Ksplice stores the needed relocation in-
formation in special Ksplice-specific ELF sections that
Ksplice uses to perform the relocations during the mod-
ule’s initialization procedure.

Ksplice must perform these relocations during the
module initialization procedure, rather than in user
space, in order to properly support cryptographic veri-
fication [12] of Ksplice kernel updates. Since the Linux
kernel supports modules that can be linked into and un-
linked from kernel memory after the kernel has booted,
the addresses of some kernel functions and data struc-
tures will vary across machines. This variation means
that, if we want to distribute a single cryptographically-
signed hot update kernel module that will work on all
machines running a particular kernel version, then we
must defer completing the relocations for that hot update
until after the update module has been inserted into the
kernel and the kernel loader has had the opportunity to
verify the module’s cryptographic signature.

3.6 run-pre matching solution
Both the ambiguous symbol name problem and the com-
piler variation problem can be solved using an approach
that we call run-pre matching. The compiler varia-
tion problem arises because of unexpected and unde-
tected differences between the run code and the pre code.
Ksplice can avoid failing silently in this situation by
adding a step to the hot update process to check the run
code against the pre code. Specifically, we should be
concerned if we can find a difference between the run
code and the pre code in the kernel compilation units that
are being modified by the hot update.

During the process of comparing the run code against
the pre code, the hot update system can also gain infor-
mation about symbols that Ksplice was previously hav-
ing difficulty mapping to addresses because of the am-
biguous symbol name problem. The run code contains
all of the information needed to complete the relocations
for the pre code.

run-pre matching passes over every byte of the pre
code, making sure that the pre code corresponds to the
run code. When this process comes to a pre word of
memory that is unknown because of a pre relocation en-
try with an ambiguous symbol name, Ksplice can com-

pute the correct final pre address based on the corre-
sponding run bytes in memory.

For example, consider a situation in which the pre
code contains a function that calls translate table,
but two local symbols with that name appear in the ker-
nel. The pre object code generated by the compiler
will, as in all relocation situations, not contain a final
translate table address at the to-be-relocated po-
sition. Instead, the pre code’s metadata will know that a
symbol name (translate table) and an “addend” †

value are associated with that to-be-relocated position in
the pre code. The ELF specification says that the to-be-
relocated position’s final value in memory will be com-
puted from the addend (A), the translate table
symbol value (S), and the final address (P ) of the to-be-
relocated position. Specifically, this position will take on
the value A + S − P .

When run-pre matching gets to the to-be-relocated lo-
cation in the pre code, it will note that this relocation has
not yet been fulfilled, and it will examine the run code in
order to gain the information needed to fulfill it. The run
code contains the already-relocated value val , which is
val = A + S −Prun . The run-pre matching system also
knows the run address of that position in memory (Prun).
The pre code metadata contains the addend A, and so the
symbol value can be computed as S = val + Prun −A.

Although Ksplice does not require that the hot update
be prepared using exactly the same compiler and assem-
bler version that were used to prepare the original binary
kernel, doing so is advisable since the run-pre check will,
in order to be safe, abort the upgrade if it detects unex-
pected binary code differences.

In order to operate correctly, the code for the run-pre
matching system needs two architecture-specific pieces
of information. First, the matching system must know
the list of valid jump instructions for the target architec-
ture so that the matching system does not conclude that
the run code and the pre code differ because of two rela-
tive jump instructions that point to the same location but
that use differently-sized offsets for the jump.

Second, the run-pre matching system must know what
instruction sequences are commonly used as no-op se-
quences by assemblers for that architecture. In order to
manipulate code alignment, assemblers will sometimes
insert efficient sequences of machine instructions that are
equivalent to a no-op sequence. The run-pre matching
system needs to be able to recognize these sequences
so that they can be skipped during the run-pre matching
process. The GNU assembler for x86-32 and x86-64 has
a preferred no-op-equivalent sequence for each possible

†The “addend” is an offset chosen by the compiler to affect the
final to-be-stored value. For x86 32-bit relative jumps, this value tends
to be -4 to account for the fact that the x86 jump instructions expect an
offset that is relative to the starting address of the next instruction.

6



desired length between one byte and 15 bytes.

3.7 Finding a safe time to update
A safe time to update a function is when no thread’s in-
struction pointer falls within that function’s text in mem-
ory and when no thread’s kernel stack contains a return
address within that function’s text in memory.

Before inserting the trampolines, Ksplice captures all
of the machine’s processors and checks whether the
above safety condition is met for all of the functions
being replaced. If this condition is not satisfied, then
Ksplice tries again after a short delay. If multiple such
attempts are unsuccessful, then Ksplice abandons the up-
grade attempt and reports the failure.

Ksplice therefore cannot be used to upgrade non-
quiescent kernel functions. A function is considered non-
quiescent if that function is always on the call stack of
some thread within the kernel. For example, the primary
Linux scheduler function, schedule, is generally non-
quiescent since sleeping threads block in the scheduler.
This limitation does not prevent Ksplice from handling
any of the 50 significant Linux security vulnerabilities
from May 2005 to December 2007.

3.8 Patching a previously-patched kernel
When a system administrator wants to apply a new patch
to a previously-patched running kernel, Ksplice needs to
be provided with two inputs, which are similar to the
standard Ksplice inputs:

• the kernel source for the currently running kernel,
including any patches that have previously been
hot-applied (this source is the “previously-patched
source”)

• the new source patch (which should be a difference
between the previously-patched source and the de-
sired new source)

The update process is almost exactly the same as
before. The pre object code is generated from the
previously-patched source code, and the post object code
is generated from the previously-patched source code
with the new patch applied. The run-pre matching
system will compare pre object code against the latest
Ksplice replacement function code already in the kernel.
When the hot update is applied, the previous trampoline
is overwritten with a new trampoline.

4 Implementation
We implemented Ksplice’s design for Linux 2.6. Ksplice
currently supports the x86-32 and x86-64 architectures.

Although small parts of Ksplice, such as the trampo-
line assembly code, need to be implemented separately
for each supported architecture, most of the system is
architecture-independent.

4.1 Overview
The update “module” produced by Ksplice is actually
two Linux kernel modules, so that part of the system
can be unloaded after the update is complete, in order
to save memory. Ksplice’s implementation consists of
three components:

• a generic “helper” Ksplice Linux kernel module,
written in C, responsible for loading the pre object
code and performing run-pre matching

• a generic “primary” Ksplice Linux kernel module,
written in C, responsible for loading the post object
code and inserting the trampolines

• user space software, written in C and Perl, that, us-
ing the input to Ksplice, generates object files that
are linked into the generic Ksplice kernel modules
in order to produce the ready-to-insert modules

The primary module for a hot update must always be
inserted before the helper module. The primary module
will be inactive until the helper module has been loaded.
Once the helper module has been loaded, the update pro-
cess will begin, and after the update process is complete,
the helper module can be removed. Since the helper
module must contain the entire compilation unit corre-
sponding to each patched function, it can be significantly
larger than the primary module.

The userspace responsibilities of performing
a Ksplice update are managed by a Perl script,
ksplice-create, that invokes C programs (written
using the GNU Binary File Descriptor library) in order
to perform specific operations on object files. For
example, one such C program, objdiff, is responsible
for detecting the differences between corresponding
object files and reporting back what sections differ
and the entry points of those sections. Another C
program, objmanip, is responsible for removing the
ELF relocations from an object file so that the relocation
information can instead be stored in a Ksplice-specific
ELF section, which will be processed after the module
has been inserted. Essentially identical procedures are
used for preparing the pre and post groups of ELF sec-
tions. The processed pre ELF sections, which potentially
originate from several different kernel compilation units,
are eventually combined with the helper kernel module.
The processed post ELF sections are combined with the
primary kernel module in a similar manner.

7



4.2 Capturing the CPUs to update safely
Ksplice uses Linux’s stop machine run facility in
order to help achieve an appropriate opportunity to in-
sert the trampolines. The Linux kernel normally uses
stop machine run for CPU hotplugging and sus-
pend/resume functionality. stop machine run cre-
ates one high priority kernel thread for each CPU on
the machine, and it configures these threads so that each
thread will only be scheduled on its own distinct CPU.

Once these high priority kernel threads have simul-
taneously captured all of the CPUs on the system,
stop machine run will run a desired function on a
single CPU. Ksplice uses stop machine run to ex-
ecute a short function that checks for the patch safety
condition discussed in section 3.7. If this condition is
met, the function inserts the appropriate trampolines for
the hot update.

5 Evaluation
To evaluate Ksplice, we applied Ksplice to the 50 patches
described in Section 2. We are interested in how many
security patches from this interval can be applied suc-
cessfully to running kernels. Success means that the
patch was applied and the kernel kept functioning with-
out any observed problems while building a new kernel
and sending and receiving network traffic. We expect a
few of the patches to be incompatible with Ksplice be-
cause some of the patches require changes to the seman-
tics of long-lived kernel data structures. For the vulnera-
bilities for which exploit code was readily available, we
also tested that the exploit code worked before the hot
update and did not work after the hot update.

5.1 Methodology
Since no single Linux kernel version needs all of the
50 security patches (many of the vulnerabilities were in-
troduced during the 32-month period of ongoing devel-
opment), we tested Ksplice with these 50 patches us-
ing five different Linux kernels released by the Debian
GNU/Linux distribution and six different “vanilla” Linux
kernels released by kernel.org on behalf of Linus Tor-
valds. These kernels are shown in Table 2 and Table 3.
The details of which patches were tested on each kernel
are available in the Appendix.

The kernel.org kernels were only introduced into the
evaluation process in order to test security patches that
are not applicable to any released Debian kernel. For
most of the patches in this category, the security prob-
lems corrected by the patch were completely absent from
any released Debian kernel. Some Linux kernel security
vulnerabilities are caught before they make it into many

Table 2: Debian kernels used for implementation testing

Debian version number Release date
2.6.8-2-686-smp 2.6.8-15 i386 2005-03-24
2.6.12-1-686-smp 2.6.12-1 i386 2005-07-22
2.6.16-1-686-smp 2.6.16-1 i386 2006-03-22
2.6.22-1-686 2.6.22-1 i386 2007-07-17
2.6.23-1-686 2.6.23-1 i386 2007-12-05

Table 3: Vanilla kernels used for implementation testing

kernel.org version number Release date
2.6.11.9 2005-05-11
2.6.19 2006-11-29
2.6.20.4 2007-03-23
∼2.6.21.1‡ 2007-04-30
2.6.23-rc3 2007-08-13
2.6.24-rc2 2007-11-06

released kernels seen by users, and other vulnerabilities
affect portions of the kernel that are completely disabled
by some Linux distributions.

We obtained the original binary and source Debian
kernel packages from a historical archive of nearly all
packages released by Debian since mid-2005 [19]. For
each kernel, we began by fetching the compiler and as-
sembler versions originally used by Debian in order to
compile that binary kernel. We then used the kernel
source from that kernel’s Debian source package as in-
put to Ksplice, along with an unmodified security patch
taken directly from Linus Torvalds’ GIT tree. In order
to perform the hot update on a running machine, we in-
stalled the corresponding binary Debian kernel package
on a machine, and we booted the machine into that ker-
nel.

5.2 Results

Ksplice has been used to correct 42 of the 50 significant
x86-32 kernel vulnerabilities during the time interval.
Ksplice’s system for resolving symbol names in difficult
situations and its support for assembly code are impor-
tant for achieving this percentage of supported patches.
Nine of the 42 patches modify functions that contain
ambiguous or missing symbols, and much of the kernel
makes use of assembly code via common primitives that
manage concurrency control and other operations.

For example, CVE-2005-1264 changes the function
raw ioctl in drivers/char/raw.c, but both the

‡GIT revision b7b5f487ab39bc10ed0694af35651a03d9cb97ff

8



Table 4: Kernel vulnerabilities that cannot be patched
using the Ksplice design

CVE # Reason for failure
2005-2500 adds field to structure
2005-2709 adds field to structure
2005-3179 changes data initialization value
2006-1056 changes data initialization value
2006-3626 changes data initialization value
2006-5753 changes data initialization value
2007-1217 changes data initialization value
2007-4571 changes data initialization value

kernel’s raw character device driver and its ipv4 imple-
mentation contain a local function named raw ioctl.
Since both of these drivers can be included with the ker-
nel as an optional module, a naive hot update system
would find, when running on a kernel with only the ipv4
driver loaded, the single raw ioctl symbol and re-
place it with the raw character device driver replacement
function. Ksplice’s run-pre matching system ensures that
symbols are resolved correctly and that functions look as
expected before they are patched.

As another example, one recent x86-64 patch, CVE-
2007-4573, modifies the ia32entry.S assembly file
in order to zero-extend all registers in order to avoid an
arbitrary execution vulnerability in the 32-bit kernel en-
try path. Ksplice handles this patch using the same tech-
niques that handle patches to pure C functions.

Eight of the 50 patches were not supported by the
Ksplice design. As shown in Table 4, these patches
change the semantics of long-lived kernel data structures,
either by changing the default value of a data structure or
by adding a field to a data structure. Some of the patches
explicitly change the initial value of a data structure via
the C variable declaration, and some patches change a
data structure initialization function.

Working exploits for two recent x86 vulnerabilities are
available on the web. We have used exploit code for
CVE-2006-2451 [13] and CVE-2007-4573 [9] in order
to confirm that these security vulnerabilities disappear
when the corresponding hot updates are applied.

6 Related work

There are two streams of work related to Ksplice: aca-
demic papers with various approaches to the hot update
problem and discussions within the Linux community.
We discuss the relationship of Ksplice to these in turn.

6.1 Research literature

DynAMOS [15] is a recent hot update system that helps a
programmer to manually prepare hot updates for Linux.
Constructing a DynAMOS hot update requires a kernel
programmer to carefully write new source code files with
certain properties, and automating the construction of
these files is not trivial in the general case. Also, since
DynAMOS does not perform the kind of object code
comparisons that Ksplice performs, it is vulnerable to
the inline function silent failure described in section 3,
and it cannot be used in some situations because it can-
not detect kernel symbol values from the running kernel
image.

LUCOS [6] is a virtualization-based hot update sys-
tem that enables a programmer to manually prepare hot
updates for a Linux machine running on top of a cus-
tomized version of the Xen [2] virtual machine monitor.
LUCOS uses the virtual machine monitor in order to gain
a high degree of control over the kernel during the update
process. By controlling the kernel’s underlying hard-
ware, LUCOS can, for example, intervene when partic-
ular addresses in memory are accessed. Unlike LUCOS,
Ksplice does not require virtualization, and Ksplice gen-
erates hot updates directly from source code patches.

The K42 research operating system [3, 4] has imple-
mented hot update capabilities in K42 by leveraging par-
ticular abstractions provided by that operating system’s
modular, object-oriented kernel. Ksplice’s design fo-
cuses on immediately supporting existing, mainstream
operating systems, with no strict expectations placed
upon the original, running kernel. For example, a Ksplice
user with an existing Linux system should not need to
reboot into a redesigned, “hot update compatible” Linux
kernel before they can start using hot updates.

OPUS [1] is a user space hot update utility for C pro-
grams that shares several design choices with Ksplice.
OPUS, like Ksplice, targets security updates, is mostly
automatic, and does not require source code design
changes to the to-be-updated software. Ksplice’s run-
pre matching system allows Ksplice to analyze and ma-
nipulate code differences safely at the object code layer,
rather than at the C source code layer, which helps
Ksplice avoid some of OPUS’ limitations. Ksplice
can, for example, support function signature changes,
changes to inline functions, and changes to functions
with static local variables. Also, unlike OPUS, Ksplice
does not require that the to-be-updated software be com-
piled with special options enabled, and Ksplice does not
require any compiler code modifications.

Ginseng [16] is a user space hot update utility for C
programs that handles more kinds of updates than ei-
ther OPUS or Ksplice. Ginseng is capable of upgrad-
ing user space software such as OpenSSH across several

9



years’ worth of releases, but Ginseng makes significant
compile-time changes to programs in order to support its
upgrades. Ginseng rewrites C programs at compile time
in order to perform function indirection and type wrap-
ping, and Ginseng expects a programmer to annotate the
to-be-updated software to indicate safe update points. In
contrast, OPUS and Ksplice do not rewrite the to-be-
updated software at compile time and do not require any
programmer annotations.

Early work in the DAS operating system [11] included
hot update primitives in the operating system, but these
primitives could not be used to upgrade the kernel.

6.2 Linux community discussion
Within the Linux community, several arguments have
been presented about why eliminating upgrade reboots
is more trouble than it is worth. A summary of some of
these arguments and Ksplice’s perspective follows.

Isn’t a general solution too hard to adopt? Some
people have approached the problem of hot software up-
grades for Linux by looking at the general-case prob-
lem of how to migrate a running system from one ar-
bitrary Linux version to the next-released version. Since
adjacent kernel versions sometimes contain major code
changes, automatically handling adjacent version tran-
sitions can present significant challenges. Systems for
handling arbitrary upgrades inevitably increase the work-
load associated with releasing a new kernel version; for
example, a developer might need to write and debug a
state-transformer in order to bring data from an old for-
mat into a new format.

As discussed in section 2, most Linux kernel secu-
rity patches are quite limited in scope and do not change
the semantics of any long-lived data structures. We can
therefore leave the kernel’s internal data entirely alone
for most security hot updates, which allows for easy-to-
adopt solutions for hot updates.

Aren’t dynamic kernel modules enough? Some peo-
ple have argued that Linux’s kernel module system,
which allows the superuser to dynamically add and re-
move subsystems from the kernel, eliminates the need
for other mechanisms for updating the kernel without a
reboot. For example, a security vulnerability in a par-
ticular network driver could be corrected by unloading
the old version of that module and then loading a new
version.

Unfortunately, much kernel code cannot be treated as a
freely-unloadable module either because it contains core
functions that cannot be unloaded at all or because it
contains important state that the user would not want to
lose by unloading the module. For example, unloading a

networking driver could cause the system to lose impor-
tant networking state, which would potentially create as
much inconvenience as a reboot.

Isn’t rebooting just fine? Some people argue that
rebooting simply is not a serious concern, because
software—in particular, server software—should already
handle machine reboots on an application level grace-
fully. Although some systems are indeed designed in
order to minimize the negative impact of a machine re-
boot, many applications handle reboots poorly because
they do not support saving and resuming their exact pre-
vious state. Handling these problems in every applica-
tion is time-consuming for developers, and some appli-
cations will likely never handle restarts as well as one
would like. Furthermore, even under the best circum-
stances (with ideal software), the interruption associated
with reboots can be undesirable. Ksplice provides a low-
cost, easy-to-adopt alternative.

7 Conclusions and Future Work

Over the last 32 months, 84% of the 50 significant
Linux kernel security patches have made no semantic
changes to data structures. Ksplice has been demon-
strated to work on all of these patches. We believe
that with some improvements to handle certain easy-
to-accommodate semantic changes, Ksplice can support
even more patches.

Even without further improvement, a Linux system
administrator could, at the present time, use Ksplice
to eliminate most reboots associated with security up-
grades, which is a notable advance over the current state.

Due to Ksplice’s high level of automation and focus
on ease of adoption, it should be possible for any Linux
distributor—or other motivated individual—to start re-
leasing Ksplice-based hot update packages for common
starting kernel configurations. System administrators or
end-users who subscribe their systems to these updates
would be able to transparently receive kernel hot updates
through their Linux package manager, along with the
user space software updates to their system. This kind
of distribution of hot updates would, without any ongo-
ing effort from users, significantly reduce how frequently
they are notified by their package management system
that they need to reboot for pending security updates to
take effect. Distribution of hot kernel security updates
can reduce downtime, decrease windows of security vul-
nerability, and improve the user experience.

10



Acknowledgments
I thank Frans Kaashoek for advising me on this project.
I also thank Nelson Elhage, Sam Hartman, Anders Kase-
org, Russ Cox, and Robert Morris for useful discussions.

References
[1] Altekar, G., Bagrak, I., Burstein, P., and Schultz, A.

OPUS: Online Patches and Updates for Security. In
Proceedings of the 14th USENIX Security Sympo-
sium. August 2005.

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Har-
ris, T., Ho, A., et al. Xen and the art of virtualiza-
tion. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles. October 2003.

[3] Baumann, A., Appavoo, J., Wisniewski, R. W., et
al. Reboots are for hardware: Challenges and solu-
tions to updating an operating system on the fly. In
Proceedings of the 2007 USENIX Annual Technical
Conference. June 2007.

[4] Baumann, A., Appavoo, J., Silva, D. D., Kerr, J.,
Krieger, O. and Wisniewski, R. W. Providing dy-
namic update in an operating system. In Proceed-
ings of the 2005 USENIX Annual Technical Con-
ference. April 2005.

[5] Chamberlain, S. LIB BFD, the Binary File De-
scriptor Library. http://sourceware.org/
binutils/docs-2.18/bfd/index.html.

[6] Chen, H., Chen, R., Zhang, F., Zang, B., and Yew,
P. Live updating operating systems using virtual-
ization. In Proceedings of the 2nd USENIX Sym-
posium on Virtual Execution Environments. June
2006.

[7] Common Vulnerabilities and Exposures List.
http://cve.mitre.org/cve.

[8] Comparing and Merging Files: Unified For-
mat. http://www.gnu.org/software/
diffutils/manual/html_node/
Unified-Format.html

[9] Elhage, N. Root exploit for CVE-2007-4573.
http://web.mit.edu/nelhage/Public/
cve-2007-4573.c.

[10] Executable and Linkable Format Specification.
www.skyfree.org/linux/references/
ELF_Format.pdf.

[11] Goullon, H., Isle, R., and Löhr, K. Dynamic Re-
structuring in an Experimental Operating System.
IEEE Trans. Software Eng., July 1978, pp. 298-
307.

[12] Kroah-Hartman, G. Signed Kernel Modules.
http://www.linuxjournal.com/
article/7130.

[13] Hernandez, R. Local r00t Exploit for PRCTL
Core Dump Handling. July 2006. http:
//seclists.org/fulldisclosure/
2006/Jul/0235.html.

[14] How to Follow Linux Kernel Development
with GIT. http://www.kernel.org/doc/
local/git-quick.html.

[15] Makris, K. and Ryu, K. D. Dynamic and adaptive
updates of non-quiescent subsystems in commodity
operating system kernels. In Proceedings of the Eu-
roSys Conference. Lisbon, Portugal. March 2007.

[16] Neamtiu, I., Hicks, M., Stoyle, G., and Oriol,
M. Practical Dynamic Software Updating for C.
In Proceedings of the ACM Conference on Pro-
gramming Language Design and Implementation
(PLDI). June 2006.

[17] Necula, G., McPeak, S., Rahul, S. P., and Weimer,
W. CIL: Intermediate Language and Tools for Anal-
ysis and Transformation of C Programs. In Pro-
ceedings of Conference on Compiler Construction.
April 2002.

[18] Stallman, R. Using and Porting GNU CC. Free
Software Foundation, Inc. July 1999.

[19] Ukai, Fumitoshi. snapshot.debian.net. http://
snapshot.debian.net.

11



Appendix
The table below shows 50 security vulnerabilities from May 2005 to December 2007 along with the type of each
vulnerability and the sum of the number of non-empty lines of non-comment code added and/or removed by the
associated patch. The patch dates do not proceed in chronological order because CVE numbers are not necessarily
assigned in the same order in which vulnerabilities are corrected in Linus’ kernel tree. The next two columns indicate
the date that Linus’ kernel tree was modified to include the patch and the identification number that GIT automatically
assigned to the patch. This commit ID number provides a reliable mechanism for retrieving the patch and its associated
developer commentary. The final column indicates the Linux kernel version on which the patch was successfully
applied using Ksplice. “N/A” appears in the final column when that vulnerability’s patch changes data structure
semantics and therefore cannot be used with Ksplice.

We performed the vulnerability type classifications by reading the CVE vulnerability descriptions and the Linux
source code patches. “Read kernel mem” refers to the potential for a local user to read the contents of sensitive kernel
memory. “Failure to clear mem” refers to the potential for a local user to receive a buffer that contains traces of
sensitive information that should have previously been cleared from the buffer by the kernel. “Info disclosure” refers
to other vulnerabilities which directly enable a local user to gain access to sensitive information; further exploitation
of the system once this information has been obtained might, or might not, be possible. “Privilege escalation” refers to
vulnerabilities which potentially allow a user to perform privileged operations, such as the ability to execute arbitrary
code as the kernel or the ability to write to privileged I/O ports.

Linux x86-32 kernel vulnerabilities from May 2005 to December 2007

CVE # Type Lines ± Patch Date Linus GIT Commit # (Patch+Log) Test kernel
2005-1263 Privilege escalation 4 2005-05-11 a84a505956f5c795a9ab3d60d97b6b91a27aa571 2.6.8
2005-1264 Privilege escalation 3 2005-05-13 68f66feb300423bb9ee5daecb1951af394425a38 2.6.8
2005-1589 Privilege escalation 4 2005-05-14 118326e940bdecef6c459d42ccf05256ba86daa7 2.6.11.9
2005-2456 Privilege escalation 3 2005-07-26 a4f1bac62564049ea4718c4624b0fadc9f597c84 2.6.8
2005-2492 Read kernel mem 4 2005-09-19 6d1cfe3f1752f17e297df60c8bcc6cd6e0a58449 2.6.12
2005-2500 Privilege escalation 3 2005-08-10 58fcb8df0bf663bb6b8f46cd3010bfe8d13d97cf N/A
2005-2709 Privilege escalation 115 2005-11-04 330d57fb98a916fa8e1363846540dd420e99499a N/A
2005-3179 Info disclosure 2 2005-10-03 c0758146adbe39514e75ac860ce7e49f865c2297 N/A
2005-3180 Failure to clear mem 10 2005-10-04 9bc39bec87ee3e35897fe27441e979e7c208f624 2.6.12
2005-3276 Failure to clear mem 1 2005-07-27 71ae18ec690953e9ba7107c7cc44589c2cc0d9f1 2.6.12
2005-3784 Privilege escalation 2 2005-11-10 7ed0175a462c4c30f6df6fac1cccac058f997739 2.6.12
2005-4605 Read kernel mem 38 2005-12-30 8b90db0df7187a01fb7177f1f812123138f562cf 2.6.12
2005-4639 Privilege escalation 2 2005-11-08 5c15c0b4fa850543b8ccfcf93686d24456cc384d 2.6.12
2006-0039 Read kernel mem 4 2006-05-19 2c8ac66bb2ff89e759f0d632a27cc64205e9ddd9 2.6.16
2006-0095 Failure to clear mem 4 2006-01-06 9d3520a339d62f942085e9888f66905eb8b350bd 2.6.12
2006-0457 Read kernel mem 15 2006-02-03 6d94074f0804143eac6bce72dc04447c0040e7d8 2.6.12
2006-1056 Info disclosure 42 2006-04-20 18bd057b1408cd110ed23281533430cfc2d52091 N/A
2006-1343 Failure to clear mem 2 2006-05-28 6c813c3fe9e30fcf3c4d94d2ba24108babd745b0 2.6.16
2006-1524 Privilege escalation 3 2006-04-17 69cf0fac6052c5bd3fb3469a41d4216e926028f8 2.6.16
2006-1857 Privilege escalation 4 2006-05-19 a601266e4f3c479790f373c2e3122a766d123652 2.6.16
2006-1858 Privilege escalation 6 2006-05-19 dd2d1c6f2958d027e4591ca5d2a04dfe36ca6512 2.6.16
2006-1863 Privilege escalation 9 2006-04-21 296034f7de8bdf111984ce1630ac598a9c94a253 2.6.16
2006-1864 Privilege escalation 3 2006-05-15 3b7c8108273bed41a2fc04533cc9f2026ff38c8e 2.6.16
2006-2071 Privilege escalation 2 2006-04-12 b78b6af66a5fbaf17d7e6bfc32384df5e34408c8 2.6.16
2006-2451 Privilege escalation 2 2006-07-12 abf75a5033d4da7b8a7e92321d74021d1fcfb502 2.6.16
2006-2935 Privilege escalation 2 2006-07-10 454d6fbc48374be8f53b9bafaa86530cf8eb3bc1 2.6.16
2006-3626 Privilege escalation 1 2006-07-14 18b0bbd8ca6d3cb90425aa0d77b99a762c6d6de3 N/A
2006-3745 Privilege escalation 69 2006-08-22 c164a9ba0a8870c5c9d353f63085319931d69f23 2.6.16
2006-4813 Failure to clear mem 2 2006-10-11 8c58165108e26d18849a0138c719e680f281197a 2.6.16
2006-5751 Privilege escalation 7 2006-11-20 ba8379b220509e9448c00a77cf6c15ac2a559cc7 2.6.16
2006-5753 Privilege escalation 285 2007-01-05 be6aab0e9fa6d3c6d75aa1e38ac972d8b4ee82b8 N/A

12



Linux x86-32 kernel vulnerabilities from May 2005 to December 2007 (continued)

CVE # Type Lines ± Patch Date Linus GIT Commit # (Patch+Log) Test kernel
2006-6106 Privilege escalation 30 2007-01-08 f4777569204cb59f2f04fbe9ef4e9a6918209104 2.6.16
2006-6304 Privilege escalation 3 2006-12-06 6d4df677f8a60ea6bc0ef1a596c1a3a79b1d4882 2.6.19
2007-0005 Privilege escalation 3 2007-03-06 059819a41d4331316dd8ddcf977a24ab338f4300 2.6.16
2007-0958 Privilege escalation 4 2007-01-26 1fb844961818ce94e782acf6a96b92dc2303553b 2.6.19
2007-1000 Read kernel mem 2 2007-03-09 d2b02ed9487ed25832d19534575052e43f8e0c4f 2.6.16
2007-1217 Privilege escalation 364 2007-02-28 17f0cd2f350b90b28301e27fe0e39f34bfe7e730 N/A
2007-1353 Read kernel mem 11 2007-05-05 0878b6667f28772aa7d6b735abff53efc7bf6d91 2.6.16
2007-1730 Read kernel mem 1 2007-03-16 d35690beda1429544d46c8eb34b2e3a8c37ab299 2.6.16
2007-1734 Read kernel mem 4 2007-03-28 39ebc0276bada8bb70e067cb6d0eb71839c0fb08 2.6.20.4
2007-2480 Privilege escalation 38 2007-04-30 de34ed91c4ffa4727964a832c46e624dd1495cf5 ∼2.6.21.1§

2007-2875 Read kernel mem 15 2007-05-09 85badbdf5120d246ce2bb3f1a7689a805f9c9006 2.6.20.4
2007-3105 Privilege escalation 9 2007-07-19 5a021e9ffd56c22700133ebc37d607f95be8f7bd 2.6.22
2007-3848 Privilege escalation 13 2007-08-17 d2d56c5f51028cb9f3d800882eb6f4cbd3f9099f 2.6.23-rc3
2007-3851 Privilege escalation 15 2007-08-07 21f16289270447673a7263ccc0b22d562fb01ecb 2.6.22
2007-4308 Privilege escalation 4 2007-11-07 5f78e89b5f7041895c4820be5c000792243b634f 2.6.23
2007-4571 Read kernel mem 65 2007-09-17 ccec6e2c4a74adf76ed4e2478091a311b1806212 N/A
2007-5904 Privilege escalation 199 2007-11-13 133672efbc1085f9af990bdc145e1822ea93bcf3 2.6.24-rc2
2007-6063 Privilege escalation 5 2007-12-01 eafe1aa37e6ec2d56f14732b5240c4dd09f0613a 2.6.23
2007-6206 Info disclosure 2 2007-11-28 c46f739dd39db3b07ab5deb4e3ec81e1c04a91af 2.6.23

§GIT revision b7b5f487ab39bc10ed0694af35651a03d9cb97ff

13


