PostgreSQL 16.9 Documentation

The PostgreSQL Global Development Group

PostgreSQL 16.9 Documentation

The PostgreSQL Global Development Group
Copyright © 19962025 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2025 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in al copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THEUNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER ISON AN “AS-IS’ BASIS, AND THE UNIVERSITY OF CALIFORNIA HASNO OBLIGATIONS TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

= = o PRI XXXil
1. What 1S POSIOrESQL? ...ttt ettt e e XXXil
2. A Brief History Of POSIGrESQLccuvuiiiiiiiiieeiiii et XXXil

2.1. The Berkeley POSTGRES ProjeCtcccuuviviiiiiiiiiiiieeciiie e XXXl
2.2, POSIOrESOS ...t XXXl
2.3, POSIOrESQL .. XXXIV
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et e e e e e e e e eba s XXXIV
4. Further INfOrmationcooouiiiiiii e XXXIV
5. Bug Reporting GUIEIINESuuiiiiiiiecee e XXXV
5.1 1dentifying BUGScevvvneeiiiiiee ettt et e eeaa e XXXV
5.2. WHEt t0 REDPOIT ...ttt e XXXVi
5.3. Where to REPOIt BUGScovvvieiiiiiiieiei et XXXVil
I NV 1o - PP 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 3
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 11
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 13
2.8 UPELES ...t 15
2.9, DEBLIONSeeiieieeeeie e 15
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 17
130 B [L oo (8 1o o EO PP TOP PP 17
T VAT Y S PP 17
3.3 FOrEIgN KEBYS ..ot 17
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 18
3.5, WINAOW FUNCHIONSuiiiiii et 20
3.6, INNEITEANCE ...t e 23
7. CONCIUSION ..ttt et e e et eeena e 24
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 25
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 33
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 33
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 42
4.3. CaliNg FUNCLIONS ...ttt 56
5. Data DEFINITION ...ceeviiiiii e et et e 59
5.1 TADIE BASICS vt 59
5.2. DEFAUIT VAIUBS ...t 60
5.3. Generated COIUMNSooeueiiiiiii et 61
B4, CONSITAINTS ..ottt ettt et e et e et e e e b 62
5.5, SYyStemM COIUMNS ...t e 71
5.6. MOAIfyiNg TablES ... 72
BT PrIVIIEOES ..o e 75
5.8. ROW SeCUrity POIICIESouuiiiiiiiciei e 80
5.9, SCREMAS ...t 86
5.10. INNEITANCE ... ceeeii ettt e e e e e e 90
5.11. Table Partitioningccouuuiiiiiiiiiiii e %!
5.12. FOrEIgN DaIA ... ceieeeiieeeeii ettt 108
5.13. Other Datahase ODJECEScivvevieiiiiii e 108

PostgreSQL 16.9 Documentation

5.14. Dependency TraCKiNgeciunieiiiieeiie e e e e e e e e e e e e e e eens 108
6. Data ManipUlationcccouuieiiiieii e e e e e e e e e 111
Lo 1 == g To [- - PN 111
(S 1o = 1] oo J T - L 112
(SRR D= 1= (] ool D - LN 113
6.4. Returning Data from Modified ROWScocouiiiiiiiiiiiiicci e, 113
2O N = 1= P 115
48 T @ = 4T 1 PP 115
7.2. Tahle EXPrESSIONSciviieiii e et e e e e e e e e e eaa s 115
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 131
7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)coovvvviieeeiiiiieeeeeiennn. 133
7.5. Sorting ROWS (ORDER BY) ..uuiiiiiiiiiiciie e ea e 134
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiii ettt e e e 135
T.7. VALUES LISES ittt e et e e s 135
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 136
S T DT = T Y/ o1 PP 146
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 147
8.2, MONEAY Ty DS ittt ittt 153
LI @ o= = Tot (= G Y/ o= PPN 153
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 156
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 158
S = T To = g N Y/ o= 167
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 168
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 170
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 173
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 175
8.11. TeXt SEACH TYPES . oeen ittt e e 176
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 179
ST Q1 R 1Y/ o= PP 179
ST N S @ N Y/ o=~ ST 181
S I N = Y P 191
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 201
8.17. RANGE TYPES .. ueniiiiiie it 207
8.18. DOMAIN TYPES ..vuiitiieiii e et e e e e e et e e e e e e e et e et e e st e e e e e eaneeees 213
8.19. Object 1dentifier TYPES ..vuiiiii e e e e 214
8.20. PO | SN TP P ettt 216
ST T e =0 (o 0l N o1 PN 217
9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 219
1< I oo [or= B @ o= = (] £ 219
9.2. Comparison FUNctions and OPEratorsvevvuneeiineeiiiieeiieeeie e e e eeens 220
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 224
9.4. String FUNCtions and OPEratorsSccuueeriieiiieeiiiee e e e e e eeaneeeees 231
9.5. Binary String Functions and OPEratorscccuuvevieeeinieriineeiieeeeieeeaneeeens 241
9.6. Bit String Functions and OPEratorseveeuuieeriieeiiieeeiieeeieeeeeeaneeaens 245
A = 1 (= ¢ TN\ (o 11 o P 247
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 266
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 274
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 290
9.11. Geometric FUNCtions and OPEratorsSceevvuieeiiieeiieeiii e e e e e eaanaes 291
9.12. Network Address Functions and OPEratorseevvuveiviieeeiieeiiiieeiieeeaneens 298
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 301
9.14. UUID FUNCHIONSuiiieiiee et e ettt e et e e et e e e e s 307
9.15. XML FUNCLIONSciiiiiieeeii ettt e e et e et a e 308
9.16. JSON Functions and OPEratorscuueeeruieiiiieeiiieeeiieeeiee e e eee e eeeannas 322
9.17. Sequence Manipulation FUNCLIONSoovviiiiiiieeiii e 342
9.18. Conditional EXPreSSIONSucvvuniiiiieiiieeiiieeie e e e e e e e e e e e 343
9.19. Array FUNCtions and OPEratorsScc.ueeuuieeeinieeiieesiiieeiie e e e et eeaneeeens 346
9.20. Range/Multirange Functions and OPEratorscc.uveeunieeinieeinieeiineennnans 350

PostgreSQL 16.9 Documentation

9.21. AQQregate FUNCLIONScovuiiii e e e e 356
9.22. WINAOW FUNCLIONSuuueiiiiii et eeiin e 363
9.23. SUDQUENY EXPrESSIONS ...vuuciiineeiieeiie et e e et ee e e e e s st e e et e e st e eaaeeaneeaen 365
9.24. Row and Array COMPAIiSONSuueiutieriineeiiieeeieeeteesieeeatneeaneesteesnnaaees 367
9.25. Set RetUrning FUNCLIONSuiiiiiiii e e e 370
9.26. System Information Functions and OPEratorsccoceuveveveevineeeineeennennn, 374
9.27. System Administration FUNCLIONScouviiiiiiiiieccii e 393
9.28. Trigger FUNCHIONSuuiii i et e e e e e e e e e e et e eeaneees 410
9.29. Event Trigger FUNCLIONSccuuiiiiii e e e e 411
9.30. Statistics INfOrmation FUNCLIONSvvviiiiiieiiiii e 414
O Y oL o017/ = o] o PN 416
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 416
F0.2, O AIONS ittt et 417
10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 421
O R 1 oI (o] - o = 425
10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 426
10.6. SELECT OULPUL COIUMNSvvueeiiiieeeeiii et e et e et e e 427
T o (== USSP 429
00 O 1 oo 0 1o ISP 429
2 1 o L= G Y/ o === 430
11.3. MUItiCOIUMN INAEXES .. .ceeeviieeiii e 432
11.4. Indexes and ORDER BYcicuuuiiiiiiiiieiiiiiie ettt 433
11.5. Combining MUltiple INAEXESviiiiieiiieeie e 434
12.6. UNIQUE INAEXES ...vuiieeeii et e e e e e e e e e e e 435
11.7. INAEXES ON EXPrESSIONS ...vuiivieeiiiieii et e e et e e e e e e e e e e e et e e eaeeeanees 435
11.8. Partial INAEXES .. .ceevviieeiiii e eaens 436
11.9. Index-Only Scans and Covering INdeXeScoevvviiiiiiieiiieeiieeeeeeaies 439
11.10. Operator Classes and Operator FamilieSccooevviiiiiiiciiiiecii e, 441
11.11. Indexes and CollationSoovvuuiiiiiiiiiiee e 443
11.12. Examining INdeX USAQEuvvvniiiiieiii e e e e e e e e e e 443
N T = A= o 445
12,1 INEFOAUCTION ittt e et e e et s e e e et e e e e eae e eeeee 445
12.2. TablesS @and INAEXEScocvvuiiiiiiie e 449
12.3. Controlling TexXt SEarchccuviiiiiiiii e 451
12.4. AddItional FEAIUMESuuiiiiiii e 458
D25, PaISErS .. ettt ettt ettt ettt 464
12.6. DICHONAITES ...ueieiiii et e ettt e e e e e et e e et e eeera s 466
12.7. Configuration EXamMPIEcouiiiiiiiiii e 475
12.8. Testing and Debugging Text SEarchcooovviveiiiiiiii e, a77
12.9. Preferred Index Types for Text Searchccovevviieiiiiiiii e, 481
2250 O T 1= o ST o) oo o 482
2 T I 1] = o) PP 485
13, ConCUrrenCy CONLIOlceee e e e e e e e e e aeas 487
G20 O 1 11 oo (0o 1o PSPPSR 487
13.2. Transaction ISOIAONccevvneeiiii et 487
13.3. EXPlICIt LOCKING «.cvvueiiieeii e e e e e e e e e e eeen 493
13.4. Data Consistency Checks at the Application Levelcccccocoviviiiiinnn. 499
13.5. Seridization Failure Handlingcccoeeviiiiiiiiicii e, 500
G T O V= =P 501
13.7. Locking and INAEXESuvvvniei e 501
e (o0 7= 0= T T = P 503
14.1. USING EXPLAIL N Looi e 503
14.2. Statistics Used by the Planner ..o 515
14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvveiiinieinnnnnns 520
14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 522
14.5. NON-DUrable SEtliNGScvvvniiii e e e e eeens 525
15, Parallel QUETY ...ovniiiiiii e e e 526
15.1. How Parallel QUEry WOrKScovviiiiii e 526

PostgreSQL 16.9 Documentation

15.2. When Can Parallel Query Be USed?cocvvviiiiiiiiiiiiiiicec e 527

15.3. Parallel PIanscooovuiiiiii e 528

15.4. Parallel SAfEtYooveeeiiieiiii e 530

RIS o V7= g AN 41T o T = (o o P 532
16. Installation from BiNArEScocuuuiiiiiiiiiei et 539
17. Installation from SOUrCE COUEuuiiiiiiiii e 540
170, REQUITEIMENES ..uiiii e e e e e e e e e e e e e e et e e aa e e eanns 540

17.2. GELHNG thE SOUICEcouiiiii e e 542

17.3. Building and Installation with Autoconf and Makecc.ccoeveiiniiins 542

17.4. Building and Installation with M@S0ONcciveiiiiiiiiiiiii e, 555

17.5. Post-INStallation SEIUPcvuueiini e 564

17.6. Supported Platformsoiiiiiiii e 566

17.7. Platform-Specific NOESiiii i e 566

18. Installation from Source Code 0N WINAOWSoveiiiiiiieiiiiiie e 571
18.1. Building with Visual C++ or the Microsoft Windows SDK 571

19. Server Setup and OPEratioNoevuueiii e e 577
19.1. The PostgreSQL USEr ACCOUNLcvvuiiieiiieeeieeei e e e e e e et e e e eaaeeaens 577

19.2. Creating a Datahase CIUSLEYoivvniiiiieciie e 577

19.3. Starting the Database SErVErccvuiiiiii e 579

19.4. Managing Kernel RESOUICEScovviviin i ee e e e e e e e eae 583

19.5. Shutting DOWN the SEIVErcovuiiiiii e 591

19.6. Upgrading a POStOreSQL CIUSEESrccvvueiiieiiiieeiie e ee e eae e 591

19.7. Preventing Server SPOOfiNg ...couueivieeiii e e e e e e 594

19.8. ENCryption OPtioNScvuiiiiieii e e e e e e e e eans 595

19.9. Secure TCP/IP Connections with SSLccovuiiiiiiiiiieeicieecc e, 596
19.10. Secure TCP/IP Connections with GSSAPI Encryptioncccccevevvnnenee. 600
19.11. Secure TCP/IP Connections with SSH Tunnelsccovveveviniiiiiiineeeenn, 600
19.12. Registering Event Log on WIiNdOWScc.oviiiieiiiieiiiiceciieee e e 601

20. Server CONfIQUIAIONuuieiie e e e e e e e e e e e e e et e e e e eean s 603
20.1. Setting ParameerS ... cvvv e 603

20.2. FIlE LOCAHONS .. .civeviiee ettt e e e e e e eeeaenns 607

20.3. Connections and AUthentiCationc.uoveeviiiiiieiiii e 608

20.4. Resource CONSUMPLIONv.uueiiieiiiiieeiie e et e et e e e e e e e e e et e e et e eaneeanns 615

20.5. Writ€ ANEA LOQ ...cvvniiiiicie et e e 623

P20 N ST = L= o] o= 1o o 633
20.7. QUENY Planningc.uueiiiieiiii e e 640
20.8. Error Reporting and LOGQINGg «....uevveeiiiieeiiieiiii e e e e e e et e e e 647

20.9. RUN-tIME SEALISHICS . vvvvieeiiiiieeeeiis et e e et e e e ee e 661
L0 B O RANU 1 (o 0 47 (TRV A= o: U101 o 11 oo 663
20.11. Client Connection DEfaUITSccuuuiiiiiiinieie e 664
20.12. LOCK MBNAGEMENLcvuneiiiie e e e e e e et e e e e e eeens 675
20.13. Version and Platform Compatibilityccooooeiiiiiiiiiiiniiecs 676
20.14. Error HanNdliNgcouuiiiiciie e e e e e e e 678
20.15. Preset OPLiONS . o.uuiei e e e e e e e e e e e e e 678
20.16. CusStomMiZEd OPLiONSuuueiiieiiiieeiiie e e e e e e e e e e e e e e 680
20.17. DeVEIOPEr OPLIONScivviiiiieeii e e e e 680
20.18. SNOIt OPLIONS ...vuiiiiieii i ee e e e e e e e e e e e e e et e e eanaee 686

21, Client AUtNENLICALTIONc.vviieiii e e e e e 687
21.1. The pg_hba. conf Fileccoiiiiiii e 687
21.2. USEr NAIME MBS ..ttt 696
21.3. Authentication MethOSviiiiiiiiiiii e 698
214, Trust AULNENEICAIION ..ovvuiiiiiii e 698

21.5. Password AUtNentiCatioNcovuuiiieiiiiiee e 699

21.6. GSSAPI AUtNENLICALION ...cevvviieiiiii e 700
21.7. SSPI AUNENtICALION ...eevviieeeiie e 701
21.8. Ident AULhENTICAIONcevevieeeeii e et e e e eeee e eees 702
21.9. Peer AULNENLICALIONcveeeiiieiieii e eaaens 703
21.10. LDAP AULhENtICALIONeviveiieieiiee et e e 703

Vi

PostgreSQL 16.9 Documentation

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

21.11. RADIUS AUNENtICAIIONcvvvvviiiiieieeeeerceiiiie s e e e e e e e e e e e e s 706
21.12. Certificate AUENICALIONuuiiiiiiieeci e 707
21.13. PAM AULheNtiCatioNoiieeeiiiieiii e e e e e 707
21.14. BSD AUhENtiCAtioNcvvvveiiieeeeeeeciiiis e s e e e e eeeiis s e e e e e e eeaare e e e eeeeeaes 708
21.15. Authentication Problemsviiiiiiiiiiiiiiii e 708
DataDase ROIESceeiiiei et 710
22.1. Datahase ROIESuuvuiieeeiiiieee et 710
22.2. ROIE ALIDULES ... e et et eeees 711
22.3. ROIE MEMDBErSNIP . ivecii e 713
22.4. Dropping ROIESiii e 714
22.5. Predefined ROIESoviiiiii e e e e e e e e e aanee 715
22.6. FUNCHION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e e aa e eeas 717
Managing Databasesccvueiiii i 718
23,1, OVEIVIBIW v ettt s e e e e e e e et e e e e e e e e e aaa i a e e e e eaeeannnes 718
23.2. Creating @ Databaseccvvuiiiiieii e 718
23.3. Template Databasesuoeeviieiiii e 719
23.4. Database Configurationc.eeiuiieiiiieiii e e e e e e eaes 721
23.5. Destroying a DatabhaSeccevuiiiiiiiiiie e 721
23.6. TADIESPACES ... cive e 721
(oo 112 1o PP 724
P I o oz LIS o] oo o AP 724
24.2. Coll@tion SUPPOITcivieeei e et e e e e e e e e e e e et e et e e aaeeeens 728
24.3. CharaCter Set SUPPOIciii e e e e e aes 738
Routine Database MaintenanCe TasKSveeeereieriiiiiieeeiiieee e e e eein e eeeieneeeeee 748
25.1. ROULINE VACUUMING ...uuiiitiieii e e e e e e e e e e e e s e e e e e e et e e eaneeeenes 748
25.2. ROULINE REINAEXING ©..cvvneiiiieiii e e e e e e e e e e e e aens 757
25.3. Log File MaiNteNanCeueeuueiiii e ee e e e e e e e 758
Backup and RESIOIEuuuiii e e 760
26.1. SOL DUIMIP .ottiiiiieeeie ettt e e e e e e e e et e s e e e e e e e aaaaan s e e e eeaeaenes 760
26.2. File System Level Backupc..oevuiiiiiiiiiiiiccie e 763
26.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 764
High Availability, Load Balancing, and Replicationcccoeeviiiiiiiieiiinecinens 775
27.1. Comparison of Different SOIUtioNScccuviiiiiiiiiii e 775
27.2. Log-Shipping Standby SErVErScccvniiiiieiii e 778
27.3. FallOVEL ..ot aaaaaaan 787
27.4, HOt StANADY ..vvvniiieeiiieieiee et s e e e e e e e e e e e e e e e eanaae 787
Monitoring Database ACHIVITYcouvneiiicii e 796
28.1. Standard UnNiX TOOIS ..euuuuieeiiiieeiiii ettt 796
28.2. The Cumulative StatisticsS SYSteMccvvniiiiiiciie e 797
28.3. VIEeWING LOCKScouiiiiiiii e e 836
28.4. Progress REPOMINGuivveieiii e e e e e e e e e e e e e e e e aaeees 836
28.5. DYNAMIC TIaCiNG ..ovuueiiieiiiieeiiie et e e e e e e e et e e e e e e e e e et e e et eeaaeeaens 844
MONItOriNG DisSK USBOEciviiiii e e e e e e e et e e eaeees 854
29.1. Determining DiSK USAQEuuiiviiiiiieiii e e e e e e et e e e e e 854
29.2. Disk FUIl FaIlUIccceeiieiiie e eeeaaaaes 855
Reliability and the Write-AhEad LOgccvuiiiiiiiiiii e 856
O = = T] 1 YRR 856
30.2. Data ChECKSUMSceviiieeiii et et e et e e et e e e eat e e eeee 858
30.3. Write-Ahead Logging (WAL) ...oouiiiiiie e 858
30.4. Asynchronous COMMITveiunieiiiieei e e e e e e e e e e eaaeens 859
30.5. WAL Configurationccuueeiuuieiiieeiiie e e e e e e e e e e et eesa e eaaneeeees 860
30.6. WAL INEEIMEIS ..vuiiiiii ettt e e et e e e eeeat e e eees 863
oo Torz I == o) Lo 1 Lo o RN 865
T . o o= 1o o PP 865
G IS U 1= v] o1 Lo o P 866
IR T = o TV 1 872
314, COMUMN LISES cevviieeiiiii et e e et e et e e eat e eeees 880
G R 0o) [Tt £ PP 883

vii

PostgreSQL 16.9 Documentation

G I (== T o LS 883

I A N o 1) (= o 10 (= PSSP 884

G I8 T 1V g (o o Vo [885

G IS S = ol 1) Y PP 885
31.10. Configuration SELHNGScvvvneieiieiii e e e e e e e e eanas 886
3110, QUICK SBEUD «.eeeeiiiee ettt 887

32. Just-in-Time Compilation (JIT) ..ocuueiiinieiii e e e e e 888
32.1. What IS JIT compilation?cceieiiiiiiiieiie e 888

32.2. WHEN 10 JIT 2 1ottt et e e e e e e e eaees 888

IC22C T @0 011 To 1= 1 (o] o U 890

324, EXEENSIDIITY ooeeveieeeii e 890

T B L= | (= o T 1= =P 891
33.1. RUNNING the TESES ...iviiciii e e e e e e 891

33.2. TSt EVAIUBLION ..vuieeiiiieeee et 895

33.3. Variant Comparison FilEScoouiiiiiiiiii e 897

G A = £ 898

33.5. Test Coverage EXaminaionc.uvveiuneeiiieiiiieeiie e e e e e e e eaaeeeeen 899

IV, Clent INEEIACES ...vu i e 900
34, 1iBPG — C LIbrary ..coouooii e 905
34.1. Database Connection Control FUNCLIONScccuviviiiiiiiiieiiece e, 905

34.2. Connection StatuS FUNCLIONSuuiiiiiiiieeeiii e eees 923

34.3. Command EXeCUtion FUNCLIONSooeviiuiiieiiiiieee e 930

34.4. Asynchronous Command ProCESSINGcuuveiinieiiieeiiieeeiieeeiieeeireraieeaanens 946

34.5. PIPEliNE MOUEconiiiiei e e 950

34.6. Retrieving Query Results ROW-bY-ROWccooceiiiiiiiiiiii e, 954

34.7. Canceling QUENES IN ProgresS evuuneeiiiieeiieeeieeee e e e e et e s e e e eeens 955

34.8. The Fast-Path Interfaceccooviiiiiiiiii e 956

34.9. Asynchronous NOEIfICatiONcocviiiiiiiii e, 957
34.10. Functions Associated with the COPY Commandcccceveeviiineeriiinnnnn. 958

17 0 I o g o I 0T 1 PP 962
34.12. Miscellaneous FUNCLIONSc.uuieiiiiiieeiiii e e e e 964
34.13. NOLICE PrOCESSING ©.uevvvneieineeii e et et e e e e e et e e e e e st e e et e e et e e st eeaneeanns 968
3414, EVENE SYSLOIM ..uuiiiiiiii ettt e e e e et e e e e e et e aeee 969
34.15. Environment VariableSovvviiiiiiiiii e 975
34.16. The Password FIlecoeuuiiiiii e 977
34.17. The Connection Service Fileiviiiiiiiiiii e 978
34.18. LDAP Lookup of Connection Parametersooceuvveviiiieiiieeiiiieciieeeaneens 978
34.19. SSL SUPPOIT ..ttt 979
34.20. Behavior in Threaded Programscoceuieiiiieeiiiiiiii e e e 983
34.21. Building [ibpg Programsccuiiiiii i 984
34.22. EXAMPIE PrOQramSu.iiiiiciiiiceii e e e e e e e e e e e e e e e eans 985

LS T IR (0 (=l @) o[ox P 997
11300 I g1 1o [0 o 1 o PP 997
35.2. Implementation FEAIUIESccvuuiiiii e 997

35.3. CleNt INtEIfACES . .cevvvi e 997

35.4. Server-Side FUNCHIONSoiveuiiieeiiii et 1002

35.5. EXAMPIE Programc.uueiiiieiii e e et e e e e s e et e et e e et e e e eee 1003

36. ECPG — Embedded SQL N C ...covvviiieiiiii e 1009
G I N I =T o o1 o P 1009

36.2. Managing Database CONNECLIONSccvvvnieiiieiiiiecii e e e e 1009

36.3. Running SQL COMMANGASocvuuiiiiieiiiiieeie e e e e e e e e 1013

36.4. Using HOSt VariableScoouniiiiiiiii e 1016

36.5. DYNAMIC SQL ..evvuiiiiiiiiie e 1030

36.6. POLYPES LIbraryoovvniiiiicii e 1032

36.7. USING DESCIIPLOr ATEBSivvnieiieeeiieeieee e e e e e e e e e e e eanas 1046

36.8. Error Handlingccuoeiiiiiiii e 1059

36.9. PreproCessor DITECHIVESuuiiiii e e e e s 1066
36.10. Processing Embedded SQL Programscccueevviiieviieeiieeiiieeeieesinns 1068

viii

PostgreSQL 16.9 Documentation

36.11. Library FUNCLIONSc.uiiiiiiei e e 1069
36.12. Large ObJECEScvuieiii e e e e e e e e e e e e e e e 1070
36.13. CH+ APPHCALIONS .. cevveiii e e e e 1071
36.14. Embedded SQL COMMANGSccvvueiiiiiiiiieeiii e e e e e e e e 1075
36.15. Informix Compatibility MOdecoovviiiiiiii e, 1099
36.16. Oracle Compatibility MOdecovvniiiiiiii e 1114
TN I A 101 1= 1 1 7= O 1114
37. The INformation SChEMAviiiiii e 1117
37.1. The SChEM@ ... 1117
A DT - B Y oS PP 1117
37.3.informati on_schema _catal og namecccocccoveiiiiiinveeeennn, 1118
374.admnistrable role _authorizationsccooeeiiiiiiiiniiinennn, 1118
37.5.applicabl @ rol €S .o, 1118
7.6, At LT T DUL ES 1o 1119
37.7. Char @Ct BF S S ittt 1121
37.8.check_constraint_routine_usageccoeveviieeiiiieiiinecinneennnn, 1122
37.9. cheCK _CONSErai NES .oiiiiiiiii e 1122
37.10. COI T @t ONS couiiiiiiiii e 1123
37.11.col l ation_character_set _applicabilityccccooininiinnin. 1123
37.12. cOl UM_COl UMM_USAQE ..ievniiiii e e 1124
37.13. cOl UM _dOMBI N_USAQE ..civvniiiiiieiei e 1124
37.14. COl UNM_OPL i ONS oiviiiii e 1124
37.15. COl UMM_Pri Vil €06S oo 1125
37.16. COl UNM_UAL _USAQE .uiiiiieiiiieiii e e e e e e eaaes 1126
37.17. COL UMMIS oo e 1126
37.18. constrai Nt _COl UNM_USAQE ...uuiivvniiiiiieiieeei e e 1129
37.19.constraint_tabl e _uUsSagec.cccoveviiiiiiiii i 1130
37.20.data_type priVvil €ges .o 1130
37.21. dOMBI N_CONSETai NE'S toviiiiiiiiii e e 1131
37.22. dOMBI N_UAL _USAQE ..iiiiiiiii et e e e e e eaaes 1131
7 T (o] 11 U o =S PP 1132
37.24. €l EIMENE L Y PES it 1134
37.25. €Nabl €d 0l €S i 1136
37.26.foreign_data wrapper_OptioNnsccccoeveiiiiiiiiiiin e, 1136
37.27.T0orei gn_dat @ W apPer'S .oiiiiiieiii e 1137
37.28.forei gn_Server_Opti ONS ..cciiiiiiiiiiii e 1137
37.29. f OF €I g _SBI VI S tiiiiiiii e et e e e e e e e e e e e e et e e aanees 1137
37.30.foreign_table Optionscccoviiiiiiiiiii 1138
37.3L.foreign_tabl €S .o 1138
37.32. KEY_COl UM _USAQE ..iivieiiiieiiii e e e e e e e e et e e e e eanes 1139
37,33, Par AR B S ittt 1139
3734 referential _constraintsccooeiiiiiiiiii i 1141
37.35. 10l €_COl UM_grant's ..oooouiiiiiiiiie e e 1142
37.36. 10l €_routine_grants ...coooiiiiiiiii e 1142
37.37.r0le_tabl e grants ..o 1143
37.38. 10l €_UAL _grant'S ..oooiiiiiiiiii e 1144
37.39. 10l €_USAQE_grantS ..iiiiiiiiiiii et 1144
37.40. routi Ne_COl UNM_USAQE ..evviiiiiiiiii e 1145
374L. routiNe_Privil @0ES . 1145
37.42. 10Ut i NE_TOUL I NE_USAQE .vuiiviiiiii i e e e e e e e 1146
37.43. 10Ut i NE_SEQUENCE _USAQE ..cvvvneiineeeinieerieertiierateesineestnaesanaeeannes 1147
3744. routine_tabl @ USAge ...coovvviiiiiii 1147
745, TOUL T MBS it e e 1148
37.46. SCREMAL @ .oeiveieii e 1152
Y T =To [1] [o =1 PP 1152
37.48. SOl _F AL UM ES vt 1153
3749.sql _inmplenmentation info ..., 1154
37.50. SOl PAIt S ciiiiiiii i 1154

PostgreSQL 16.9 Documentation

3751 SOl ST ZI N e 1155
37.52. tabl e CONStrai NtS ..o 1155
37.53. tabl @ Pri Vil €0ES . 1156
754, 1 AD] €S v 1156
3755, L FANST OF ITB oo e e 1157
37.56.triggered update Col UMS ...ccoiiiiiiiiii e, 1158

T Y A W g e [0 =] =T 1158
37.58. Udt _Pri Vil €0ES oo 1160
37.59. USAQE_Pri Vil BOES i 1160
37.60. user _defined _tYPeS .o 1161
37.61. user _mappi NG_OPLi ONS ..iiiiii e 1163
37.62. USEI _ITBPPI NUS wuueiiiiiiiieeiii ettt e e e e e e e e e e e e e e e e st eeaaaeaanaees 1163
37.63. Vi EW _COl UMMN_USAQE .ivvniiiiieiiii et e e e 1163
37.64. Vi EW T OUL i NE_USAQE ..vuiiiiiiiii e e e e et e e 1164
37.65. view tabl @ USAQe ...ccoeiiii i 1164
706, Vi BWS oiitiieiiiii ettt e et e 1165

AV = L= . 0o = 0 01 411 oo P 1167
38. EXIENAING SQL ..evviieiiii et 1173
38.1. How Extensibility WOrksc.cooiiiiiiiiiiii e 1173

38.2. The PostgreSQL TYPe SYSEM ...vuuiiiiiei e 1173

38.3. User-Defined FUNCLONSiiiiiiiiiiiiiee e 1176

38.4. User-Defined ProCeAUMEScvvuvunieiiiiiieeeeie e 1177

38.5. Query Language (SQL) FUNCLIONSccvvuieiiiieii e ee e e, 1177

38.6. Function Overloadingcoovvuiiiiiiiiiie e 1194

38.7. Function Volatility CategOori€suveiiuieiiiiieii et e e e e 1195

38.8. Procedural Language FUNCLIONSuveiiiieiiii e eeeee e e e 1196

38.9. INternal FUNCLIONSuiiiiiiiiiiie e 1196
38.10. C-Language FUNCLIONSccuuieiiii e e e e 1197
38.11. Function Optimization INfOrmationcceceveveiiiieiiiieeiie e, 1217
38.12. User-Defined AQQregatesc.uuviiunieiiieeiiieeee e e e e e et e e e e 1219
38.13. USer-DefiNed TYPES ..vuueieeiieiiii ettt 1226
38.14. User-Defined OPeratOrscccuueiiiieiiiiieiieee e e e e e e 1230
38.15. Operator Optimization INfOrmMationccceceviieiiiieiiii e, 1231
38.16. Interfacing EXteNSIONS t0 INAEXEScvvvciiii i 1235
38.17. Packaging Related Objects into an EXteNsionccceeevvieviiineiinneennnn. 1248
38.18. Extension Building INfrastruCturecoccoveeiiiiiiiieiie e, 1256

11 T I o (o = N 1261
39.1. Overview of Trigger BEhaViorccovvviiiiiiiiiiie e 1261

39.2. Visibility of Data ChangeSvveiiiiiiieiiieeie e 1264

39.3. Writing Trigger FUNCLIONS IN Covviiiiciiicc e 1264

39.4. A Complete Trigger EXamplecooueiiiiiiiiicce e 1267

O V= o | T (o (= N 1271
40.1. Overview of Event Trigger BEhaviorccoiviiiiiiiiiiiie e 1271

40.2. Event Trigger Firing MatriXcocvvuiiiiiiiiiiii e e e 1272

40.3. Writing Event Trigger FUNCEIONSIN Covviiiiiieecee e, 1275

40.4. A Complete Event Trigger EXamplec.ooviiiiiiiiiieiiii e 1276

40.5. A Table Rewrite Event Trigger EXamplecccoovvviiiiiiiie i, 1278

A1, The RUIE SYSLEIM ...ttt e e et e e et e e e eeaaaeeeees 1279
41.1. ThE QUENY TrEE .uuiiiiiieii ettt e e e e e e et e e e e eees 1279

41.2. Views and the RUIE SYStEMccovviiiiiiii e 1281

41.3. MAEri@iZed VIBWS ... e a e 1287

41.4. Rules on | NSERT, UPDATE, and DELETEcccviiiiviiiinieiiiieeeceii, 1290

41.5. RUIES aNd PrIVIIEES .. .covneii e 1301

41.6. Rules and Command SEALUSc.uuieriiiiiieieiiiieeeeee e e i 1303

41.7. RUIES VErSUS TIIQOENS covueiinieeiiieeeieeee e e e e e eae e et e e e et e e ete e et aesaaeeaanaees 1303

42. Procedural LanQUABOESuevvunieiieeiiieeiee et eeeeieeeae e et s e et e e et e e et e saneasnaens 1306
42.1. Installing Procedural LangUagEeSccuovvviieiieeiiieciineee e e e 1306

43. PL/pgSQL — SQL Procedural LangUagecc.uveeunieiiiieiiiieeiineeieeeeieeeaneens 1309

PostgreSQL 16.9 Documentation

T I @Y= VPSPPSR 1309
43.2. Structure of PL/PGSQLivvnieiieei e 1310
A3.3. DECIArAHONS ...t 1312
B e d o (== 0] 1 1318
43.5. BASIC SEALEIMENES ...uuiiieiiiiee e et et et et e e e e e e e eaeans 1319
43.6. CONLTOl SITUCLUMNESieeeii et e e e e e e eannns 1327
A O 1 o = T PP PTP TP 1342
43.8. TransaCtion Managementcveiuieeiiieeiii e e e e e e e e eeaes 1348
43.9. Errors ant MESSAgESuuueivneiiiieiiiee e e ee e e e e e e e e e et e e et e e et aaanaes 1349
43.10. Trigger FUNCHIONSccuuiiiii e e e e e e e e e e eees 1351
43.11. PL/pgSQL under the HOOdoeiiiieiiiiii e 1360
43.12. Tips for Developing in PL/PGSQLuovvvniiiiiicieec e, 1363
43.13. Porting from Oracle PL/SQLccovuiiiiiieiiieeee e 1367
44, PL/Tcl — Tcl Procedural LangUageceeuueviinieiiiieeiieeeiieeeeee e e e e e e 1377
Y I @Y= VPSPPSR 1377
44.2. PL/Tcl Functions and ArgumeNtSccuuveviiieiineeiiiieeiiee e eeei e eaeeeens 1377
44.3. Data Values in PLITCl ..o 1379
44.4. Globa Datain PLITCl ..ouuiiiiiiii e 1379
44.5. Database AcCeSS From PL/TCl ...uivviiiiiiiiii e 1380
44.6. Trigger FUNCLiONS iN PLITCl .ouniiiii e 1382
44.7. Event Trigger FUNCtions in PL/TCl ...vvivviiii e, 1384
44.8. Error Handling in PL/TCl ...oovniiii e 1384
44.9. Explicit Subtransactions in PL/TClcoovviiiiiiiii e 1385
44.10. Transaction ManagemeNtooeviiieiiii e e 1386
44.11. PL/Tcl CONfigUIationieinieiiiieeiie e e e e e e e e e e e e e e eeeen 1387
44.12. Tcl Procedure NEMESuviiiiiieeeiii et e e eeai e 1387
45, PL/Perl — Perl Procedural LanguUagecceuueeeinieiiiieeiieeceiieeeiee e e e eeaieens 1388
45.1. PL/Perl Functions and ArguMENTSccuuieiiiieiiiieeeiieeii e e ieeaineeaaeens 1388
45.2. Data Values in PLIPErl ..o 1393
45.3. BUIlt-iN FUNCHIONS ...coeviieei e 1393
45.4. Globa Values in PLIPENoiiiiiiie e 1398
45.5. Trusted and Untrusted PL/PEr|oviiiiiiiiiiiiiiiiee e 1399
N T o I = 4 I I T o L= 1400
45.7. PL/Perl EVENt TIIQOEIS . ovvueiiiieiii e e e e e e e e e et e e e e e e e e eens 1402
45.8. PL/Perl Under the HOOooviiiiiiiiiii e 1402
46. PL/Python — Python Procedural Languageooevvvieiiiieiiiiiciii e e 1404
46.1. PL/Python FUNCHIONSuuiiiiici e e e e 1404
6.2, DAA VAIUBSuieiiii it e 1405
46.3. SNANNG Daalcvveeiiiieii e 1411
46.4. Anonymous Code BIOCKSovvviiiiiiieii e e 1411
46.5. Trigger FUNCHIONSiiviiii e e e 1411
46.6. DAADASE ACCESS ...evuueieiiii ettt e e e ettt e et e e e eaaa 1412
46.7. EXplicit SUDLraNSaCioNSoovvunieiiiieii e e 1416
46.8. TransaCtion Managementoeeiuieeeiieeiiiie e e e e e e e eenes 1417
46.9. Utility FUNCHIONSiiiiicii e e e e 1417
46.10. Python 2 vs. Python 3 1418
46.11. Environment VariableScoovvuiiiiiiii 1418
47. Server Programming INtErfaceoovvviiiiiii e 1420
47.1. Interface FUNCLIONS ... ciiviiiieeiii e e e e e e e eae e eees 1420
47.2. Interface SUPPOrt FUNCLIONScivveiiii e e e e 1462
47.3. Memory ManagemMentc.viuviuieiiiiieeieee e e 1471
47.4. TransaCtion Managementcveiuieeiiieeiii e e e e e e e eaaes 1481
47.5. Visibility of Data Changesccuuviiiiiiiiiiiiiiee e 1484
A7.6. EXAMPIES ...iieiei e 1484
48. Background WOTKEr PrOCESSESc.uuiiiieiiiieiiiee s e e e e e e e e e e et e e e e aanas 1488
L R T o= I D= wo o [1 o [P 1491
49.1. Logical Decoding EXampleSccuuiiiiiiiiiiciiie e 1491
49.2. Logical Decoding CONCEPLSuueivueeiiieiiiiieeiieeeiie e e e e e e e e e eaaeees 1495

Xi

PostgreSQL 16.9 Documentation

49.3. Streaming Replication Protocol Interfacecccoveviiviiiiiiiiiiiiecceen, 1496
49.4. Logical Decoding SQL INtErfaceccuuveviiiiiiieeii e 1497
49.5. System Catalogs Related to Logical Decodingcooevvvvevvieiineiinneennnn. 1497
49.6. Logical Decoding OUtput PIUGINSccuuiiiiiiiiieeii e 1497
49.7. Logical Decoding OULPUL WIHLEISuuevviiiiiiiciie e 1505
49.8. Synchronous Replication Support for Logical Decodingccocevvneennnn. 1505
49.9. Streaming of Large Transactions for Logical Decodingcccoeeevvnnnenn. 1506
49.10. Two-phase Commit Support for Logical Decodingcoccvvveviveennnnnns 1507
50. Replication Progress TraCkingceuieiiiieii e ee e e e e e e e s e eaaee e 1509
51, Archive MOUUIEScooviieii e 1510
51.1. Initialization FUNCHIONSivviviieeeii e 1510
51.2. Archive Module Callbackscoveviiiiiiiiiiii e 1510
VL REFBIBNCE ...ttt et et et e e e e e 1512
S @ I o 41097 o 1517
A B RT ittt 1521
ALTER AGGREGATE ...ttt ettt e e e e e eeanns 1522
ALTER COLLATION .uuiiiiiiiiet ettt e et ea et e e e e s 1524
ALTER CONVERSIONooiiiiiiiiiiieeiiii e e et e et eeane s 1527
ALTER DATABASE ..o 1529
ALTER DEFAULT PRIVILEGEScooiiiiiiiii e 1532
ALTER DOMAIN L.ttt e et e e e 1536
ALTER EVENT TRIGGERcccuuiiiiiiiiiieiiiie et 1540
ALTER EXTENSION ...ouiiiiiiiieiiiii ettt e e e 1541
ALTER FOREIGN DATA WRAPPERcccuuiiiiiiiiiieiiiii e 1545
ALTER FOREIGN TABLE ...cootiiiiiiii et 1547
ALTER FUNCTION .uiiiiiiieeeei et e et eeea e 1552
ALTER GROUP ..ottt ettt e e et e eaeaans 1556
ALTER INDEX ...iiiiiiiieieis ettt et e e et e e e aan s 1558
ALTER LANGUAGE ..ottt 1561
ALTER LARGE OBUJECT ...ouuiiiiiiiiieiiiiaie et s et e et e et ea et e e e eane e 1562
ALTER MATERIALIZED VIEWcooiiiiiiiiiiie e 1563
ALTER OPERATOR ...ttt e et e e e e e e eees 1565
ALTER OPERATOR CLASS ...ttt ettt eeaeens 1567
ALTER OPERATOR FAMILY oottt 1568
ALTER POLICY ittt e e e s 1572
ALTER PROCEDUREcuuiiiiiiiiee ettt 1574
ALTER PUBLICATION ..ottt 1577
ALTER ROLE ..ottt 1580
ALTER ROUTINE ...ttt e e e e aai e e e eeans 1584
ALTER RULE ..ottt 1586
ALTER SCHEMA ..o et e e e eeeaa e eaes 1587
ALTER SEQUENCE ..ottt 1588
ALTER SERVER ...ttt 1591
ALTER STATISTICS ... 1593
ALTER SUBSCRIPTION ...coiiiiiiiiiiieiiiiiie ettt e e e eeeaenns 1594
ALTER SYSTEM ..ottt e s 1597
ALTER TABLE ... 1599
ALTER TABLESPACE ..ottt 1617
ALTER TEXT SEARCH CONFIGURATIONcooiiiiiiieiiiiiieeeiiieeeeeiine e 1619
ALTER TEXT SEARCH DICTIONARY ...uiiiiiiiiiiiiiiiieeeeii e 1621
ALTER TEXT SEARCH PARSERccoviiiiiiiiii e 1623
ALTER TEXT SEARCH TEMPLATEviiiiiieee e 1624
ALTER TRIGGERooiiiiiiiiieie et 1625
ALTER TY PE it e et e aaan s 1627
ALTER USER ...t et e et e et e e et e eees 1632
ALTER USER MAPPING .. .coitiiiiiiiiie et e et e e 1633
ALTER VIEW ..ottt 1634
ANALYZE ..o e e e 1636

Xii

PostgreSQL 16.9 Documentation

BEGIN oo 1639
CALL o 1641
CHECKPOINT .t 1643
L O SE .o 1644
CLUSTER ..o 1645
COMMENT Lo 1648
COMMIT e 1653
COMMIT PREPAREDccoiiiiiiiiiiiii e 1654
O Y 1655
CREATE ACCESS METHODccuiiiiiiiiiiicii e 1665
CREATE AGGREGATE ... 1666
CREATE CAST o 1674
CREATE COLLATION L..uiiiiiiiiiiiii e 1678
CREATE CONVERSION ..ottt 1681
CREATE DATABASE ..o 1683
CREATE DOMAIN ..ot 1688
CREATE EVENT TRIGGERooiviiiiiiii e 1691
CREATE EXTENSIONoviiiiiiii e 1693
CREATE FOREIGN DATA WRAPPERcooiiiii 1696
CREATE FOREIGN TABLEiiiii 1698
CREATE FUNCTION L..ooiiiiiiiiii e 1703
CREATE GROUP ..ottt 1712
CREATE INDEX ...t 1713
CREATE LANGUAGE ... 1722
CREATE MATERIALIZED VIEW ... 1725
CREATE OPERATOR ...t 1727
CREATE OPERATOR CLASS ... 1730
CREATE OPERATOR FAMILY .o 1733
CREATE POLICY .o 1734
CREATE PROCEDUREcoiiiiiiiii e 1740
CREATE PUBLICATION ...ttt 1744
CREATE ROLE ...oiiii e 1748
CREATE RULE ...ooi e 1753
CREATE SCHEMA ..o 1756
CREATE SEQUENCEcoiiiiiiiiiic e 1759
CREATE SERVER ... 1763
CREATE STATISTICS ... 1765
CREATE SUBSCRIPTIONouiiiiiiiiiii e 1769
CREATE TABLE ... 1774
CREATE TABLE AS L. o 1797
CREATE TABLESPACE ... 1800
CREATE TEXT SEARCH CONFIGURATIONcocviiiiiiiiiieie e, 1802
CREATE TEXT SEARCH DICTIONARY ..ot 1803
CREATE TEXT SEARCH PARSER ... 1805
CREATE TEXT SEARCH TEMPLATE ..., 1807
CREATE TRANSFORMoiiiiiiiiiii e 1808
CREATE TRIGGER ..ot 1810
CREATE TYPE .o 1817
CREATE USER ..o 1826
CREATE USER MAPPING ..ot 1827
CREATE VIEW ..ot 1829
DEALLOCATE ..o 1835
DECLARE ..o 1836
DELETE . o 1840
DISCARD ...t 1843
DO e 1844
DROP ACCESS METHODcoviiiiiiiiiiiiciici e 1846
DROP AGGREGATE ...t 1847

Xiii

PostgreSQL 16.9 Documentation

DROP CAST oo 1849
DROP COLLATION .ottt 1850
DROP CONVERSIONcouiiiiiiiiiiciii e 1851
DROP DATABASE ..o 1852
DROP DOMAIN .ot 1853
DROP EVENT TRIGGERcciiiiiiiiiii e 1854
DROP EXTENSION ...coiiiiiiiiiici e 1855
DROP FOREIGN DATA WRAPPERccociiiiii e, 1856
DROP FOREIGN TABLEooiiiii e 1857
DROP FUNCTION ..ottt 1858
DROP GROUP ...ttt 1860
DROP INDEX ...ttt 1861
DROP LANGUAGE ... oot 1863
DROP MATERIALIZED VIEW ..o 1864
DROP OPERATOR ...ttt 1865
DROP OPERATOR CLASS ..o 1867
DROP OPERATOR FAMILY oiiiiiiiii e 1869
DROP OWNEDcoiiiiiiiiiiiii et 1871
DROP POLICY ottt 1872
DROP PROCEDUREiiiiiiiiiici e 1873
DROP PUBLICATION ..ottt 1875
DROP ROLE ..ot 1876
DROP ROUTINE ...coiiiiiiiiii e 1877
DROP RULE ...t 1879
DROP SCHEMA ... 1880
DROP SEQUENCEcoiiiiiiiii e 1881
DROP SERVER ...t 1882
DROP STATISTICS ... 1883
DROP SUBSCRIPTION ..ottt 1884
DROP TABLE ... 1886
DROP TABLESPACE ..o 1887
DROP TEXT SEARCH CONFIGURATIONooivviiiiiiiiiiiiiec e 1888
DROP TEXT SEARCH DICTIONARY ...couiiiiiiiiiiiii e, 1889
DROP TEXT SEARCH PARSER ..o 1890
DROP TEXT SEARCH TEMPLATE ..o, 1891
DROP TRANSFORM ...ttt 1892
DROP TRIGGERcouiiiiiiiiiii e 1893
DROP TYPE ..o 1894
DROP USERcoiiiiiiiiiii e 1895
DROP USER MAPPINGouiiiiiiii e 1896
DROP VIEW ..ot 1897
END o 1898
EXECUTE .o 1899
EXPLAIN Lo 1900
FET CH 1906
GRAIN T 1910
IMPORT FOREIGN SCHEMA ... 1916
INSERT .o 1918
LISTEN oo 1926
LOAD o 1928
LOCK i 1929
MERGE ... 1932
MOVE .o 1938
NOTIFY e 1940
PREPARE ... 1943
PREPARE TRANSACTIONiiiiiiiiiiiicii e 1946
REASSIGN OWNEDociiiiiiiiii e 1948
REFRESH MATERIALIZED VIEW ..o 1949

Xiv

PostgreSQL 16.9 Documentation

REINDEX ... ittt e e e e et e e e et e e e e e 1951
RELEASE SAVEPOINT ..ottt e e 1956
S PP 1958
REVOKE ..ot e e e 1959
@ I I ¥ L 1 TSP 1964
ROLLBACK PREPAREDcuiiiiiiiiiiiiiiie et e e e eeeens 1965
ROLLBACK TO SAVEPOINT ...ttt e e 1966
SAVEPOINT Lottt e e e e e e et e e e e 1968
SECURITY LABEL ...oiiiiiii e 1970
SE L T i e e 1973
SELECT INTO ittt e et e e et e e et e e e eanns 1995
SE T e e 1997
SET CONSTRAINTS ..ottt e e e e e eaees 2000
S I (O PP 2001
SET SESSION AUTHORIZATION ...vuiiiiiiiiieeiii et 2003
SET TRANSACTION ..ottt et e et eeeni e eaes 2005
SHOW e 2008
START TRANSACTION ...ouiiiiiiiiieei e 2010
TRUNCATE ..ottt et e e e e e e e e e aaa s 2011
UNLISTEN L.t e e e et e e e e aa s 2013
L N I PP 2015
VACUUM L. e ettt e et e e et e e e eat e eeee 2020
VALUES .. et e et et aaae 2025
I1. PostgreSQL Client APPlICAIONSuuiiiiieiii e e e 2028
CIUSLEIAD ..o e 2029
(o= 1= 0| o ISR 2032
(0= (S T PP 2036
o1 0] 0o | o S 2041
(01 0] 11 P 2044
1< 0¢ oo PP PP 2047
1o I 1.1 1= P 2050
PG _DESEDACKUD ... 2056
070170 o TSN 2065
o100) o 2089
o700 L0 o TP 2092
PO AUMPAIL ..o 2106
[T TS (== |V N 2113
[T T = o= AV L= 2115
[oTo T (= o1/ oo o= 2120
10 (== (0] (PP PPRPPPIPRN 2124
PY_VENTYDACKUD ..veiee e 2133
0 o | 2136
=T 070 1= | o TP 2180
(2= e U1 o | o PP 2184
[11. PostgreSQL Server APPlICaLiONScvvuiiiiieiie e e e e e e e 2189
TNTEAD e e 2190
PY_arChiVECIEaNUD i 2195
Lo e 0= S 041N 2197
[oTo T w0011 0] [=1 - RPN 2199
oo N o | P 2200
Lo T =5 = A1 | 2206
o To T (=111 o 2210
L0 T (=S)Y 1 2214
o To I === A (1 421V PN 2215
o100 oo =" [TP 2219
o To 1Tz o L1 4o o 2228
105 0 === PPN 2232
RV I 1 1= 0= ST PT 2239

XV

PostgreSQL 16.9 Documentation

52. Overview of PoStgreSQL INtErNalSccuuiiiiiiiiee e e 2245
52.1. The Path Of @ QUENYoivniiiii i e 2245
52.2. How Connections Are Establishedccooooiiiiiiiiiiiee, 2245
52.3. ThE Parser St ...uuivvnieiiie et e et e e e e eens 2246
52.4. The PostgreSQL RUIE SYStEMcuvuiiiiiiiiieieii e 2247
52.5. Planner/OptiMizZErccouuiiiiieii e 2247
52.6. EXECULOLeeniieetieee et ettt e e e enns 2248

TSIV 1< (IO - [0 o 2250
I @Y= V1= 1 SRR 2250
53,2, PO_A0GI €A & it 2252
L3 G T o Lo - 1o [P 2253
LY X N o To = 11 £ 0] o PP 2254
D3 5, PO NPT OC ittt 2255
B53.6. pg_at trdef oo 2255
B3.7.pg_attribut @ oo 2256
53.8. PO _AUL NI 0 e 2258
53.9. pg_aut h_MBNDErS .o 2259
5300, PO LA ittt 2259
5311 PO Cl @SS it 2260
53.12. PG _COl L At i ON coveiii i 2263
LY T K o To T X o] 1 11 4 - Y I o | PN 2263
e I S o To T o1 o] 0 A VZ=1 G =Y o o PN 2265
53.15. Pg_dat @DaSE ..ccvuiiiiiii 2266
53.16. pg_db rol e SettinNg .cooiiiiiiiiii 2267
53.17. pg_defaul t _acl ..o 2267
LT S o To o =Y 11 o o RPN 2268
LT L N o To e (=YY of g I o} A 0 o [2270
53,20, PO BNUM .t 2270
e T B o To T =A V=1 0 | G A o Lo [2271
53.22. PO _EXE ENST ON civiiiiiiiiii e e 2271
53.23. pg_foreign_data W apper ...occccoiiiiiiiiiiieeii e 2272
53.24. PG _fOr €I N _SEI VeI ittt 2273
53.25. pg foreign tabl @ .o 2273
eI T o To T T o [N 2273
B53.27. PG i NNEIT 1S it 2275
53.28. PO T NIt Pri VS et 2275
KT I o To TR B Y (o 1V = Vo 1= PN 2276
53.30. pg_l argeobj Ct ... 2277
53.31L. pg_largeobject_netadataccooeeeviiiiiiiiiiiiie e 2277
53,32, PO _NAIMESPACE ottt 2278
53.33. PO _OPCl @SS winiiiiiiiiii i 2278
5334, PO _OPI AL OF et 2279
53.35. PG _OPF @M [Y oo 2279
53.36. pg_paramet €r _aClooiiiiiii 2280
53.37.pg_partitioned tabl eccooiiiiiiii 2280
53.38. PO POl i CY crrtiiiii e 2281
53,30, PO Pl OC ittt 2282
53.40. pg_Publ i Cati ON oo 2284
53.41. pg_publicati on_NamBSPaCEeccoeeviieiiieeiii e 2285
53.42. pg_publication_rel . 2285
R A o To T - 1 [0 =T PP 2285
5344.pg replicati on_Ori giN i 2286
LT o To T =X I A - TN 2286
53.46. pg_secl abel ... 2287
o Xy oo I =To [U1=] o [o] = PRSPPI 2288
53.48. pg_ShAePeNndcoovniii 2288
53.49. pg_ShAeSCri PtiON oo 2289
53.50. pg_shsecl abel ... 2290

XVi

PostgreSQL 16.9 Documentation

5351 PG ST AT ST C civrieiiiiiii e 2290
53.52. PG St At i STi C_ XL i 2291
5353. pg_statistic_ext_datacccooiiiiiiiiiiiiii i, 2292
53.54. PG _SUDSCIi PLI ON coiiiiii e 2293
53.55. pg_SUbSCription_rel . 2294
53.56. pg_tabl ESPACE ..civiiiii e 2294
B3 57. PG _tranSt OF M. 2295
TSt o To T O I [1= N 2295
53.59. PO 1S CONTF I G civriiiiiiiii e 2297
53.60. P tS_CONFi g IMBP ooiiiniiii e 2297
B53.6L PO 1S i Cl orriiiiieii i 2298
D382, PO b S PaI ST ittt 2298
53.63. PO tS LEMPI At € corvriiii i 2299
L o7 o o To T S04 o 1 PP 2299
53.65. PG _USEI _IMAPPI NQ tovniiiiiieiiiieiiiie e e e e e e e e e e e et e e e e eaanees 2303
B4, SYSEEM VIBWS ...iieciii e et e et e e e e e e e e e et e e et e e et e e aa e aens 2304
BA.1. OVEIVIBIW ...eeiiiieee it e ettt e ettt e e et s e e et s e e e et n e e e et s e e eeatnneaaees 2304
54.2. pg_avail abl @ _ ext enSi ONScocoviiiiiiiiiiii e 2305
54.3. pg_avail abl e_ext ensi on_Versi oNsc.ccoeveviiieiiiiniiiineiineennn, 2305
54.4. pg_backend _nmendry Contextsoccoooviiiieiiiiiiii e, 2306
B4, 5. PO CONT I g e 2307
LoV o o Lo T o U1 =Y o] = PRSP 2307
54.7.pg_fil e SettinNgsS oo 2308
D 8. PO O OUP ittt 2308
54.9. pg_hba fil e rul S ., 2309
54.10. pg_ident _file_MapPi NOS .o 2310
oY O o To T T ¢ o 13 €= 1 N 2310
B54.12. PO | OCKS it 2311
oY R o To N .- Y S VA = PN 2313
B54.14. PG PO T Cl 8BS it 2314
54.15. pg_prepared_Stat @eMBNES ...cooiiiiiiiiiiiii 2314
54.16. pg_prepar €d_XaCL S ...ciiiiiiiiiiiiiii e 2315
54.17. pg_publication_tabl scccooiiiiiiiiii 2316
54.18.pg_replication_origin_statuscccoeveiiiiiiiiniiiin i, 2316
54.19. pg replicati on_SIotS .ooiiiiiiiiiii i 2317
54.20. PO T Ol BS ittt 2318
oY B o Yo N G V1 =TSN 2319
54.22. pg_SeCl abel s ..o 2319
54,23, PO _SEUUEBNCES ottt 2320
oY Ny o T X =) O A 4 [PN 2321
54.25. PG _SHAUOW ...ouiiiiiii e 2323
54.26. pg_shmem al | 0Ccat i ONScccoviiiiiiiiiii e 2323
D, 27. PO ST AL S ittt 2324
54.28. PO _St Al S BXE tiriiiiiii i 2325
54.20. PO_St Al S_BXL _BXPI S 1ttt 2326
54.30. PGt Abl €S oriiiiii i 2328
54.31. pg_timezone_abbrevs ... 2328
54.32. PG _t i MBZONE _NAIMES ..ivuiiiiieiiiieei e e e e e e e e e e e eanes 2329
LoV A o To T U =1 = PP 2329
Y RC N o T TRV ET=1 N 1Y o] o L o 1T 2330
Y/ ST o T T A I =1 TN 2330
55. Frontend/Backend ProtOCOIvviiiiiniiiiiii e 2332
LI I @Y= V1= T SRR 2332
55.2. MESSAPE FIOW ...vviiiiiiiii e 2333
55.3. SASL AULhENTICAIONiiieviieieei e 2347
55.4. Streaming Replication ProtoColcccccuieiiiieiiiieiiiieeee e eeiee e 2348
55.5. Logical Streaming Replication Protocolccoooeviiiiiiiiiniiee, 2357
55.6. MESSAgE Dala TYPBS ..vuiviiiiiiiie ettt 2359

XVii

PostgreSQL 16.9 Documentation

56.

57.

58.
59.

60.

61.

62.

63.
64.

65.
66.
67.

68.

69.

70.

55.7. MESSA0E FOIMMELS . ovuiviii e 2360
55.8. Error and Notice Message FieldSc.ooeviiiiiiiiiin e 2376
55.9. Logical Replication Message FOrMAELSccevuveiiieiiiieeiiieeiiiieeiieeeaneens 2378
55.10. Summary of Changes since Protocol 2.0cccoveviiiiiiiiiiiiiiecieeeiees 2387
PostgreSQL Coding CONVENTIONSc.vuiiiiiieiiieeieee e ee e e e e e e e e e e eeenees 2389
LT I o 0= 1] o 2389
56.2. Reporting Errors Within the Servercooovvviieiii i 2389
56.3. Error Message Style GUIEc.uiviiiiii e 2393
56.4. Miscellaneous Coding CONVENLIONSceuuieiieeiiiieiiie e e eaee e 2397
Native Language SUPPOITuuuiiii e ee e e e e e e e e e et e e et e e et eeaneee 2399
57.1. FOr the TranSalorveiiiiiieieiies e 2399
57.2. FOr the Programimercooiuniiii i e e e e s 2401
Writing a Procedural Language Handlercoooeeviiiiii i, 2405
Writing a Foreign Data WIaDPENcvviieii e e e e e e e e e e e e e eans 2407
59.1. Foreign Data Wrapper FUNCLIONScccuviiiiiiiiii e 2407
59.2. Foreign Data Wrapper Callback ROULINESoovvviiiiiiiciiieccieecieeeen, 2407
59.3. Foreign Data Wrapper Helper FUNCtionSccooveviiiiiiii v 2423
59.4. Foreign Data Wrapper Query Planningcccocevvveiiiiieineciineccieeeieeeen 2424
59.5. Row Locking in Foreign Data WIapperSoevvveveinieeiieeiiieeeneeaeeeaenns 2427
Writing a Table Sampling Methodcoooiiiiii e, 2429
60.1. Sampling Method Support FUNCLIONScccvvieiiiciiiieci e, 2429
Writing a Custom Scan Provideroveiiieiiii i 2432
61.1. Creating Custom Scan Pathscccccoiiiiiiiiiiii e 2432
61.2. Creating Custom SCan PlanSoeviiiiiiiii e e e 2433
61.3. EXECUtiNG CUSLOM SCANSuvvviiiiiiieiiee e e e e e e e e e e e e et e e e e eees 2434
Genetic QUENY OPLIMIZENieiiiei e e e e e e aens 2437
62.1. Query Handling as a Complex Optimization Problemcceeeeenn. 2437
62.2. GENELIC AlQOMItNMS ...t 2437
62.3. Genetic Query Optimization (GEQO) in PostgreSQLcccevvvvvvvievinnnnnn. 2438
62.4. FUrther REAINGoovviieiii e 2440
Table Access Method Interface Definitioncooeiiiiiiiiiiiieiii e, 2441
Index Access Method Interface Definitioncocuvviiiiiiiiiiiiii e 2442
64.1. Basic APl Structure for INAeXeScoouviviiiiiiiieii e 2442
64.2. Index Access Method FUNCLIONSoovvveiiiiiiiiccc e 2445
64.3. INAEX SCANNING +..evvneiiieeiie et e e e e e e e e e e e e et e et e eanaeeaen 2451
64.4. Index Locking Considerationsc..ovevuiieiiiieeiiiiecii e e e 2452
64.5. Index Uniqueness ChECKSoovuuiiiiiiiii e 2453
64.6. Index Cost EStimation FUNCHIONSuuieiiiiiiieeiiiiie e 2454
GENEiC WAL RECOIUSuuiiiiiiie ettt 2458
Custom WAL ReSOUICE MaNAGENS .. cuuvviiiiiiiiiiieee ettt e e e 2460
B-TrEE INUEXES ..vu ittt e e et e e et e e e eatn e eaees 2462
% 1 oo (8o 1o o TP 2462
67.2. Behavior of B-Tree Operator ClasseScovvviviiiiiiiiiiiiiiecieec e, 2462
67.3. B-Tree SUppOort FUNCLIONSuviiiiieiii e eeaes 2463
67.4. IMPIEMENTBEION .. .euuiiii e e e e e e e e e eaaeees 2466
GIST INOEXES ..ottt e et e e et e e e et e e e e b 2469
51S 00 g1 oo (8o 1o o TP 2469
68.2. BUilt-in Operator ClasseScvuuieiiii e 2469
68.3. EXLENSIDIILY ooeeveiieiiii e 2472
68.4. IMPIEMENTBEIONuuiiii e e e e e e e eaaeees 2484
B8.5. EXAMPIES ...t 2485
SP-GIST INEXES ...eevvieeeiie et e e e e e e aa e e eenes 2486
LS1e 0 1 oo (8o 1o o SRR 2486
69.2. BUilt-in Operator ClasseSccvuuieiiii i 2486
69.3. EXLENSIDIILY ooeeeeeieei e 2488
69.4. IMPIEMENTBEIONvuiiii e e e e e e e e e e eaaeees 2497
B9.5. EXBMPIES ...ttt e 2498
GIN TNOEXES ..ottt e e e e e eeeaan e es 2499

XViii

PostgreSQL 16.9 Documentation

405 g1 oo (8o 1o o TP 2499
70.2. BUilt-in Operator ClasseSociuuieiiii e e aa s 2499

70.3. EXENSIDIILY ooeeeeieei e 2500

70.4. IMPIEMENTBEION .. .evuiiii e e e e e e e e e e e e e et e eaaeees 2502

70.5. GIN TipS and THICKS ..uuuiiiieiiii e e e e e e e e e eees 2504

40X I T 1] = 1 o) PSP 2504

T0.7. EXBMPIES .. ettt et 2505

T2 BRIN INAEXES ...ttt e et e e et e e e aae e 2506
4 5 1 1o o (8o 1o o ST 2506
71.2. BUilt-in Operator ClasseSocvuuieiiii i aa s 2507

71.3. EXENSIDIILY ooeeeeieeii e 2514

22 == T 110 (5= <SP 2519
T2.1. OVEIVIBIW ..ttt et e ettt e e ettt e e e e et s e e e et neeeeataeeeestnneaaees 2519

72.2. IMPIEMENTBEION .. cevuiiii e e e e e e e e e e e e et e eaaeees 2520

73. Database PhySICal SIOragecvvvieiii et e e 2521
73.1. Database FIle LayOutoovuieiii i e 2521

73,2, TOAST ettt 2523

73.3. Free SPaCe M@ ...uvuiiiiiie et 2526

734, VISIDIlItY MaD ..o 2526

73.5. The INitidization FOrKooieiiiiiieii e 2527

73.6. Database Page LayOutcoevuiiiiieiiiee e 2527

73.7. Heap-Only Tuples (HOT) oovuniiiiiii e 2530

74, TransaCtion PrOCESSINGcvvuiiiii i et e e e e e e e e e e aaaees 2531
74.1. Transactions and [dentifiersooveiiiiiiieiiiii e 2531

74.2. Transactions and LOCKINGoovuuiiiiiiiiiiii e 2531

74.3. SUDEFENSACIONSceiiviiee ettt e e e e e e 2531

T4.4. TWO-Phase TranSaClioNSvevveuiiieeiiiiie e 2532

75. System Catalog Declarations and Initial Contentsc.cccevevvieiiiiieeieeeinenn, 2533
75.1. System Catalog Declaration RUIEScccviiiiiiiiiiiccii e, 2533

75.2. System Catalog INnitial Data.........ccuueeiiiiiiiieiiieeeie e 2534

75.3. BKI Fil@ FOMMELcvvniieiiiii i 2539

75.4. BKI COMMENGSceviiiieeiiiiieee e e s 2539
75.5. Structure of the Bootstrap BKI Fileccooiiviiiiiiiiiec e, 2540

75.6. BKI EXAMPIE c.ovviiiieii et 2541

76. How the Planner USES SEatiStICS ...vvvvvniiiiiiieiiiii e 2542
76.1. Row EStimation EXamMPIESccuuviiiiiiiii e 2542

76.2. Multivariate Statistics EXamplesc.oveviiiiiiiiii e 2547

76.3. Planner Statistics and SECUNILYcovveiiiieiiiiieii e 2551

77. Backup Manifest FOMMELcoovniiiiiiii e e e e e e 2552
77.1. Backup Manifest Top-level ODJeCtocvviiiiiieiii e, 2552

77.2. Backup Manifest File ObJECtcvvviiii e 2552

77.3. Backup Manifest WAL Range ObJeCtcevvviiiiiiiiiiieecie e, 2553

RV L TN o) = o 1= PN 2554
A. POSIOreSQL Error COUESuuiiiieiiiiei e et e et e e e e e e e et e e et e e eaneaees 2561
B. Dat€/Time SUPPOITiieieii et e e e e e e e e e e e e et e e e e et e e et e eaanaees 2570
B.1. Date/Time Input INterpretationcoevveieeiiieiii e 2570

B.2. Handling of Invalid or Ambiguous Timestampsccocevveviieveineeeenennn, 2571

B.3. Date/Time K&y WOrAScovviiiiiiiii e e e e 2572

B.4. Date/Time Configuration Fil€Scoevuiiiiiiiii e, 2573

B.5. POSIX Time Zone SpeCifiCationScc.veviiiiiiiieiiiecii e e 2574

B.6. HIiStory Of UNItSociiiiiiiiiiii e e e 2576

B.7. JUIAN DAES ..euuieeeiiii ettt 2577

C. SOL KEBY WOIASceiueiiiieiie et e e e e e et e e e e e e e e et e e e eanees 2578
D. SQL CONfOIMMANCEieeiii et e e e e e e e e eaeeenas 2603
D.1. SUPPOIEd FEAUINESccvvuiii e e e e e e e 2604

D.2. UNSUPPOrtEd FEAIUIESuuiiiiieiieeei e ee e ee e e e e e e e e e e e 2615

D.3. XML Limits and Conformance to SQL/XMLcooevviiiiiiiiiiiieiiiieeiiees 2624

E. REIEASE NOES ...oevviieiiiii et e e et e e e e et e e eera e eees 2628

XiX

PostgreSQL 16.9 Documentation

E.L REEASE 16.9 ...ciiiiiiiiiiii et e e 2628
E.2. REIEASE 16.8 .. .oiieieiiiiii i e eiee et e e e e e e e 2632
E.3. REIEASE 16.7 . .coiieieiiiie i e ettt e e e e e e e e e e 2633
E.4. REEASE 16.6 ...coovvveiiiiii i e e eeee et e e e e e e e e e e 2638
E.D. REIEASE 16.5 .. iiiiiiiiiii et e e 2639
E.B. REIEASE 16.4 .. .ooeeieiiiii et e e e 2645
E.7. REEASE 16.3 .. .oiiiieiiiii e e e e e 2650
E.8. REIEASE 16.2 .. .eiieveiiiii i e e ettt e e e e et e e e e 2655
E.O. REIEASE 16.1 .. iieeiiiiiii et e e e e e e e 2661
E.10. REIEASE 16 .uvvuuiiiieiiiieiiiiie e e ee et e s e e et e e s e e e e e e aa e e e e e e e aanee 2667
E. 1L Prior REEASES ... ciiiiii ittt e eeeaa e 2687
F. Additional Supplied Modules and EXtENSIONScoevvinieiiiieiiiieciieece e, 2688
F.1. adminpack — pgAdmin support toolpackccceevvviiiiieiiiiiiiiecieeeis 2690
F.2. amcheck — tools to verify table and index consistencyccooeevvvneennnn. 2692
F.3. auth_delay — pause on authentication failureccooooiiiiiin i, 2698
F.4. auto_explain — log execution plans of SIOW qQUEFESccvevviiviiinieinnnenne, 2699
F.5. basebackup_to_shell — example "shell" pg_basebackup module 2702
F.6. basic_archive — an example WAL archivemoduleccoooeviieinnn. 2703
F.7. bloom — bloom filter index access methodccoooeeviiiiiiiiiinecin, 2704
F.8. btree_gin — GIN operator classes with B-tree behavior 2708
F.9. btree_gist — GiST operator classes with B-tree behaviorc.o.cooe 2709
F.10. citext — a case-insensitive character String typecoccvvvevveeiiiieiiiieeinns 2711
F.11. cube — a multi-dimensional cube datatypeccoocevvveiiiieiiiiieiiieeninns 2714
F.12. dblink — connect to other PostgreSQL databasescccocevvvivivnevinnnnen. 2719
F.13. dict_int — example full-text search dictionary for integers 2751
F.14. dict_xsyn — example synonym full-text search dictionary 2752
F.15. earthdistance — calculate great-circle distancesccoeeevviviiiieiinennnnn, 2754
F.16. file fdw — access datafilesin the server'sfilesystemco.ccoeveeenn. 2756
F.17. fuzzystrmatch — determine string similarities and distance 2759
F.18. hstore — hstore key/value datatypeocovvveiiiieiiiiieii e, 2764
F.19. intagg — integer aggregator and enUMETaorcocevuveevneeviieenieeninns 2772
F.20. intarray — manipulate arrays of iNtegErSccvvvvviieiiiieeiiieeeiieeeieeeannn 2774
F.21. isn — datatypes for international standard numbers (ISBN, EAN, UPC,
(o PP 2778
F.22. 10 — manage large ObJECEScvivieii e e 2782
F.23. Itree — hierarchical tree-like datatypeccooeeviviiiiiiii e, 2784
F.24. old_snapshot — inspect ol d_snapshot _t hr eshol d state 2792
F.25. pageinspect — low-level inspection of database pages..........c.ccocevveennneiis 2793
F.26. passwordcheck — verify password strengthcocoooiiiiiiiiennn, 2804
F.27. pg_buffercache — inspect PostgreSQL buffer cache statec.o..... 2805
F.28. pgcrypto — cryptographic functionscooevvieeiiii i, 2809
F.29. pg_freespacemap — examinethefree space mapcocecevevvievinneennnnnns 2819
F.30. pg_prewarm — preload relation data into buffer caches 2821
F.31. pgrowlocks — show atable's row locking informationc..ccuueeeee. 2823
F.32. pg_stat_statements — track statistics of SQL planning and execution 2825
F.33. pgstattuple — obtain tuple-level Statisticscovvevviiiiiiieeiie e, 2833
F.34. pg_surgery — perform low-level surgery onrelationdata 2838
F.35. pg_trgm — support for similarity of text using trigram matching 2840
F.36. pg_visibility — visibility map information and utilities 2846
F.37. pg_walinspect — low-level WAL iNSPeCtionccoccuvveviiiiiiiniiiiieeninnnns 2848
F.38. postgres fdw — access data stored in external PostgreSQL servers............. 2852
F.39. seg — adatatype for line segments or floating point intervals.................... 2862
F.40. sepgsgl — SELinux-, label-based mandatory access control (MAC) security
107070 L1 = PSP 2865
F.41. spi — Server Programming Interface features/examplesccceeeeennnis 2873
F.42. sslinfo — obtain client SSL informationcccovveviiiiiiiii e 2875
F.43. tablefunc — functions that return tables (cr osst ab and others) 2877
F.44. tcn — atrigger function to notify listeners of changes to table content 2887

XX

PostgreSQL 16.9 Documentation

F.45. test_decoding — SQL -based test/example module for WAL logical decod-

] o P 2889
F.46. tsm_system rows— the SYSTEM ROW5 sampling method for
TABLESANMPLE ..o 2890
F.47. tsm_system_time — the SYSTEM TI ME sampling method for TABLESAM
P e 2891
F.48. unaccent — atext search dictionary which removes diacritics 2892
F.49. uuid-0ssp — a UUID generatorcccuueviiieiieeeiiieeiieeeeeeeeine e s eeenns 2895
F.50. xml2 — XPath querying and XSLT functionalitycccooeeviviiiinnnnnn.n. 2897
G. Additional SUpPlied Programscccuuiiiiiiieii e 2902
G.1. Client APPlICAIONScvveciii e e e 2902
G.2. Server ApPlICALIONScvvi i 2909
L T (= g = I (0= o £ 2910
H.L CHeNt INtErTaCESoiiieii e 2910
H.2. AdMINIStration TOOISuuiiiiiiiiieiiiiis et e e 2910
H.3. Procedural LanQUAagEScuuveiuniiiiiieiiie et e e e e e e e 2910
[I g (= =T PP 2910
I. The Source Code REPOSITONYccuuiiiiiieiii e e e e e e e e e e e aaeees 2911
[.1. Getting the SOUrCe VIia Gitcevuiiiiiiiiie e e 2911
I B o o109 01 - 1o PP 2912
J L DOCBOOK ...ttt 2912
B o] B <SP 2912
J.3. Building the Documentation with MaKecccovveiiiiiiiii i, 2914
J.4. Building the Documentation with MESONccooeviiiiiiiiiin e, 2916
J.5. Documentation AULNOINGcovvuieiii e 2916
JB. SEYIE GUIE ...evvieiii e e 2917
K. POStGreSQL LIMItS ...cuvuiiiiiii e e e e e e e e e et e e e eees 2919
[o {0017/ 1 PP PPN 2920
M. GIOSSAIY ..ttt ettt 2927
[N IR @0 oS 0o o o AN 2941
N.L When Color iS USBHccuuiiiiiiiiiecii et 2941
N.2. Configuring the COlOrSccuuiiiiiieiie e 2941
O. Obsolete or ReNAME FEAIUIEScuvuniiiiiiiiieieii e 2942
O.1l.recovery. conf filemergedinto post gresql.conf 2942
0.2. Default Roles Renamed to Predefined ROIEScocvvvvieiiiiinieiiiiieeccin, 2942
0.3. pg_xI ogdunp renamed to pg_wal dunpccooeeiiiiiiiiiiiei e, 2942
0.4.pg_reset x|l og renamedtopg_resetwalcccocovviiiiiiiiiiiiiineins 2942
0.5. pg_recei vexl og renamedto pg_recei vewalccooceeviiiiiiiinnnnnn, 2942
(23] o] oo r="o] /0P 2944
g0 1= PP 2946

XXi

List of Figures

62.1. Structure of a Genetic AlGONThMo

70.1. GIN Internals

73.1. Page Layout ..

XXii

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 36
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 41
5.1. ACL Privilege ADDreViationscoouuiiiiiiiieiii et 78
5.2. SUMMary of ACCESS PriVIIEOESuiiiiiiiiiiii e 78
I DT r= R Y o= T PSPPI 146
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 147
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 153
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 154
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 155
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 156
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 157
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 157
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 158
8.10. DB INPUL ..ottt ettt et e e e 159
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 160
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt ettt et e et e e e e e e era s 161
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 162
8.14. Date/TIime OULPUL SEYIESot 163
8.15. Date Order CONVENTIONSu.eieitteeiiii et eeti ettt et et et e e e et et eet e e enna e eennas 163
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 165
8.L7. INEIVEl INPUL ...ttt e e et 166
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 167
8.19. BOOIEAN DELA TYPE ... eeeetie ettt ettt ettt ettt e et 167
8.20. GEOMELNIC TYPES ..ttt ettt ettt ettt ettt ettt e ettt e ettt e e e e et e e e eeba e eees 170
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 173
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 173
8.23. JSON Primitive Types and Corresponding PoStgreSQL TYPEScevvvvneviriinieieiiineeenns 182
8.24.] sonpat h Variablescoouuiiiii e 191
8.25.] SONPAL N ACCESSOIS ...ttt ettt et e e e e 191
8.26. ODJECt 1deNtifier TYPES ...t 214
8.27. PSRULO-TYPES ...ttt ettt et 217
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 220
9.2. COMPATISON PreEdiCALESvuueiiiii ettt e e eenees 220
9.3. COomMPAriSON FUNCLIONS ...ttt 223
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 224
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 226
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 229
9.7. TrigONOMELNIC FUNCHIONS eiieiei ettt et e e e e eneens 229
9.8. HyperboliC FUNCHIONSiiiiiii et 231
9.9. SQL String FUNCLiONS 8Nd OPEIELIOISuuiieeiiiieeeeii ettt e et e e e eni e eens 232
9.10. Other String FUNCEIONS 8N OPEIAIOISeiiiiiieeieii et 234
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeririnieeiiiieeeeeiie e e e 242
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 243
9.13. Text/Binary String Conversion FUNCLIONSc.uuuiiiiiiiieiiiieeeei e 244
9.14. Bit SING OPEIEIOISveieeeeti ettt ettt ettt et e et e e et e e et eeeaa s 246
9.15. Bit SING FUNCLIONSviiiiii ettt e 246
9.16. Regular EXpression MatCh OPEraOrSceuuueierrieieiii et e et e e e e eeeees 251
9.17. Regular EXPression ATOIMSuu ittt et e e et e et e e e eat e e e enta e eeenes 256
9.18. Regular EXpression QUENTITIENSuuuiieiiiieiei e 257
9.19. Regular EXpression CONSIFAINTSciierieeiiii ettt e e e 258
9.20. Regular Expression Character-Entry ESCaPESccvvvuiiiiiiiiieiiiiie e 259
9.21. Regular Expression Class-Shorthand ESCapESvevvviiieiiiiiiieeeii e 260
9.22. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 261
9.23. Regular Expression Back REFEIENCESccuuuiiiiiiiciiii e 261
9.24. ARE Embedded-Option LEErSiiiiiieeie e 262

XXiii

PostgreSQL 16.9 Documentation

9.25. Regular Expression FUnctions EQUIVAIENCIESccuviiiiiiiiiiccin e 265
9.26. FOrmatting FUNCLIONSuuiiiiie e e e e e e et e e e e an s 266
9.27. Template Patterns for Date/Time FOrmMattingoevvvieiiieeeiiieiiiieeeie e e e 267
9.28. Template Pattern Modifiers for Date/Time FOrmattingcccoevviiiiiiiineiiiieiiiieeeis 269
9.29. Template Patterns for NUumeric FOrmattingc.oveviiiiiiii i 272
9.30. Template Pattern Modifiers for Numeric Formattingccooevviiieiiineiiiecie e, 273
9.31. 1 0_Char EXAMPIEScvuiiiii et e e e e 273
RGBT (= A N1 11O o= = (0] £ T 275
9.33. DAe/TIME FUNCHIONS ...ceeviieiiii ettt et e e et e e et e e e e et s 276
9.34. AT TIME ZONE VATAMES ..evueiiiiiieeiiiiieee e e et e et e ettt e e et e e e et eeeeaen s 287
9.35. ENUM SUPPOIt FUNCHIONSiveiiiii e e e e e e e e e e e e e aan s 290
9.36. GEOMELIIC OPEIALONS .. evuueieieeiii e et e et e et e e e e et e e et e e et e e e e e et e e et e e et e eaa e eanneeaens 291
9.37. GEOMELNIC FUNCHIONS .. vttt et e et e et e e et e e e e aa e 295
9.38. Geometric Type Conversion FUNCLIONSocvuuiriiiiiiii e e 296
0.39. IP AAress OPEratOrS . ..uuueiiineeiieeei e et e e e e e et e e e e e et e e et e e et e e et e e et reeanaeeanaeaen 298
9.40. [P AdAreSS FUNCHIONSuuiieiiiiieeeeiie et et e e e et e e et e e e et e e e e ean s 299
9.41. MAC AdUress FUNCLIONSccuutiiiiiiiie et e et e et e e et e e e e e e e e eeean s 301
0.42. Text SEArCh OPEIalOrS . ..uu i iiie i eei et et et e e e e e e e e et e e et e e et e e et e e e eaneees 301
9.43. TeXt SEACH FUNCHIONSuiiieii et e et e et e e et e e e e et 302
9.44. Text Search Debugging FUNCLIONSiiiiiiiii e e 307
9.45.) SON and | SOND OPEIAIOrS ... cvvuieiiiieeiie e et e et e e e e e e e e e e e e et e e aaaes 323
9.46. Additional | SOND OPEIAOrSuuiiiiiieiie e e e e e e aa e 324
9.47. JSON Creation FUNCLIONScoivviieiiiii et e e e et e e e e e e et e e e eet e e e eaanneeeenes 326
9.48. SQL/JSON TeSting FUNCHIONScuuuiiiieeii e e e e e e e e e e e e e e e aaes 327
9.49. JSON Processing FUNCHIONSciuuuiiiieiiiiecii e e e e e s e e e e e e e et e e e eeanaeeeen 328
9.50. j sonpat h Operators and MethodScocevuiiiiiiiiiiii e 337
9.51. j sonpat h Filter EXpression EleMentSoiviiiiiiii e 339
9.52. SEqUENCE FUNCLIONSuiiii i e e e e e e e e e e e e e et e et e e aaeeaanas 342
0,53, AITAY OPEIEIONS . vttt e e et e e e e e e e e 346
.54, Array FUNCHIONSuiiiii it e e e e e e e et e e e e e et e e et e ean s 347
O.55. RANGE OPBIAIOIS . .ueuiiiitiiie ettt e e e e e aaa 350
9.56. MUILITANGE OPEIGIOISueveeeiiieeei e et e et e e e e e e e e e et e e et e et e e st e e et e e st e eaneeannns 351
9.57. RANGE FUNCLIONSiiiiiii e e e e e e e e e e e e e e e eanas 354
9.58. MUILITANQE FUNCLIONScvuiiii e e e e e e e et e e e e e 355
9.59. General-Purpose Aggregate FUNCHIONScouuieiiiieiiii e e e e 356
9.60. Aggregate FUNCLIONS TOF SEAtiStICSovvuiiiiieiii i e 359
9.61. Ordered-Set AQQregate FUNCLIONSoiiuuieii e e e e e e e e e e eeas 361
9.62. Hypothetical-Set Aggregate FUNCLIONScouuiiiiiiieiii e e e 362
9.63. GrouPIiNG OPEIatiONSc.uuiieieeiiieiie e et et e e et e e e e e et e e et e e et e et esan e eatneeeanaaetnaes 362
9.64. General-Purpose Window FUNCLIONSccouuiiiiiiieii e e e 363
9.65. Series Generating FUNCHIONScvuuiiiii e e e e e e e e e e e e e e ees 370
9.66. Subscript Generating FUNCLIONSccuuiiiiiiiiiii e e e e e e e e 372
9.67. Session INformation FUNCHIONSiiiiiiiiiee e 374
9.68. Access Privilege INquiry FUNCLIONSoiviiiiiii e e e 377
9.69. AC| I £ @M OPEIAIONS ... cvtiiiii et e et e e e e e e e e e e e e e e ee 379
9.70. ACl 1 1 @MEFUNCLIONS ...ceetiiiee e et e 379
9.71. Schema Visibility INQUINY FUNCLIONSccovuiiiiiic e e e 380
9.72. System Catalog Information FUNCLIONScccuiiiiiieiiiieiie e e e e e 381
9.73. IndexX ColUMN PrOPEITIESuiiiii e e e e e e e e e e aanas 386
O.74. INAEX PrOPEITIESiit it e e e e e e e e e e e e e e e ee 386
9.75. Index Access Method PropeErtiesuviiiieii e 386
S 10 O o PSP 387
9.77. Object Information and Addressing FUNCLIONSccoiiiiiiieiiieci e 387
9.78. Comment INformation FUNCLIONScovuviiieiiiiie e 388
9.79. Data Validity Checking FUNCLIONSccoviiiiiiciie e 388
9.80. Transaction ID and Snapshot Information FUNCLiONSccoevviiiiiiineiiccce e, 389
9.81. SNAPSNOt COMPONENES .. .evuueiiieeeieeei e et e e e e e e e e e e e et e e e e e st e e st e e et e eean e eanneeennnas 391
9.82. Deprecated Transaction ID and Snapshot Information FUNCLIONScccccvvvevinieeinnnene. 391

XXiV

PostgreSQL 16.9 Documentation

9.83. Committed Transaction Information FUNCLIONSccccuiiiiiiiinieiiiine e 392
9.84. CONtrol Data FUNCHIONSueiieiiiee ettt e e e et e e e e et e e e eaan e e eeaenns 392
9.85. pg_control _checkpoi nt Output COlUMNScovuiiiiiiiiiii e, 392
9.86. pg_control _syst emOutput COlUMNSccouuiiiiiiiiiii e 393
9.87.pg_control _init Output COIUMNSccovuieiiiieiiiie e e e e 393
9.88. pg_control _recovery Output COlUMNSccuuieiiiieiiiieiiii e e e e 393
9.89. Configuration Settings FUNCLIONSooiiiiiiiii e e 394
9.90. Server SIgnaling FUNCLIONScovuuiiiie e e e e e e eeanes 394
9.91. Backup Control FUNCLIONSuiiiiieiii e e e e e e e e e e e eaens 396
9.92. Recovery Information FUNCHIONScvvuniiii e e e e e e e e ea e 398
9.93. Recovery Control FUNCHIONSccvuuiiiii e e e e e e e e 399
9.94. Snapshot Synchronization FUNCHIONSc.uuiiiiiiciiie e ee e e e e e 400
9.95. Replication Management FUNCHIONSccuuiiiiiiiiiii e e e e e e e e 401
9.96. Database Object Size FUNCLIONSuiiiiiicii e 403
9.97. Database Object LoCation FUNCLIONScovuiiiiiciii e ee e e e e e e 404
9.98. Collation Management FUNCLIONScoouiiiiiiiii e e e e e 405
9.99. Partitioning INformation FUNCHIONSccoviiiiii e r e e 405
9.100. Index MaintenanCe FUNCLIONScoeuue e e et et e e e eaa e eees 406
9.101. Generic File ACCESS FUNCLIONSc.uuiiiiiiii i e 407
9.102. AdViSOry LOCK FUNCLIONScouuiiiiiiiiiec e e e e e e e e 409
9.103. BUIlt-1N Trigger FUNCLIONSuiiiiieiiie e e e e e e e e e e eanees 410
9.104. Table Rewrite Information FUNCLIONSoooviiiiiiiiiii e 414
12.1. Default Parser's TOKEN TYPES ..vuuiiuiiii e et e e e e e e e e e e e e e e e e e et e e ea e eaanns 464
13.1. Transaction ISOl@tion LEVEISc.uuuiiiiiiiieeeiie et e e e 488
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e e 495
13.3. Conflicting ROW-LEVE LOCKSccvuiiiiii i e e e 497
19.1. System V IPC PalramEtarsSuiuiieiiiiiie ettt e e 583
19.2. SSL SerVEr FilE USAE «..vuiiiiiii ittt ettt e et e e 598
20.1. synchronous _COMMIt MOESiiiiniiiii i e e e e e e 625
20.2. MeSSAQE SEVENLY LOVEIS ... 652
20.3. Keys and Values of JSON LOG ENIIESc.uueiviiiiiiieii e ee e e e 659
P I S o A @ 1] N =Y PP 686
221, PredefiNed ROIESiiiiiii e e e e 715
24.1. ICU CoOllation LEVEISvuieiiiii ettt e e e e et e e e s 734
24.2. ICU Collation SEINGS ...cvvvueiiiieiiiieeee aaeeaenns 735
24.3. PoStgreSQL CharaCter SELSiuuuiiiiiiiiii et e e e e e e e e e e et e e eeees 738
24.4. Built-in Client/Server Character Set CONVEISIONSuveiiviniieiiiiieeeeiiiee e e eeainees 743
24.5. All Built-in CharaCter Set CONVEISIONSuieiiiiiieeiiiiieeeeeine e et e e et e e et eeeeiennns 744
27.1. High Availability, Load Balancing, and Replication Feature Matrixcccoeevvnnennnnn. 777
28.1. DYNAMIC SEAISHCS VIEWS ..ovvniiieeiiii e e e e e et e e e e e e e e e e eeees 798
28.2. Collected SEAISHCS VIBWSveeeeieiiiiiiiee ettt e et e et e e e eaa s 799
283.pg_Stat _aCti Vity VIBW oot 802
28.4. WAL EVENE TYPES . iiiiiieeiiii ettt e et e et s e e et e e e et e e e e et eeeeaan s 803
28.5. Wait Events of TYPE ACT I Vi LY couiiiiiii e 804
28.6. Wait Events of Type Buf f €r Pi N ..o 805
28.7. Wait Events of TYPE Tl i €N ..iiiniiii e 805
28.8. Wait Events of TYpe EXt €NST ON ..oivniiiiiiiii e e 805
28.9. Wait EventS Of TYPE I O .u.iiiniiiiicii e e e e e 805
28.10. Wait Events Of TYPE I PCuuiiiiiiii ettt a s 808
28.11. Wait Events of TYPE LOCKciviiiiiiiiiie e e 810
28.12. Wait Events of TYPe LVLOCKvuiiiiiii et e e 811
28.13. Wait Events of TYPE Ti MBOUL ...uiiiiiiiiii e e e e e e e e 814
28.14. pg_stat _replicati ON VIEBW ...oooiiiiiiiii e 815
28.15.pg_stat _replicati on_ sl otS VIeWw ...cccooieiiiiiiiiiiii e 817
28.16. pg_stat_Wal _reCei VEI VIBW ..o 818
28.17.pg_stat _recovery _prefetch VIiewccooeiiiiiiiiiiii e, 819
28.18. pg_stat _subsCripti on VIEW ..cccooiiiiiiiiii e 819
28.19. pg_stat_subscription_stats VIEWcccoeeiiiiiiiiiiii e, 820

XXV

PostgreSQL 16.9 Documentation

28.20. PO ST AL SSI VIBW couiiiii i 821
28.21. pg_Stat _gSSAPI VIBW cuuriiiiiiii e 821
28.22. pg_Stat _arChi VEr VIiBWooiiiiiiiii e e e e 822
P2 I T o T =X A= L o A 1= 822
28.24. pg_Stat _bgWrit €5 VIieW ..o 824
28.25. pg_Stat WAl VIBW .ouiiiiiciii e 825
28.26. pg_stat_dat abase VieWc.ooiiiiiiiii i 826
28.27. pg_stat _database _confliCts VIEWcocoeiiiiiiiiiiiiii e, 828
28.28. pg_stat_all _tabl @S VIeW ..o 828
28.29. pg_stat _all i NdeXeS VIBW ...uiiiiiiii i 830
28.30. pg_statio_all _tabl €S VIEW ..o 831
283L. pg_statio_all 1 NAeXES VIBW ..cccuiiiiiiiiii e 831
28.32.pg_statio_all _SequUENCES VIBWccuiiiiii i 832
28.33. pg_stat_user _fUuNCti ONS VIBWcccooviiiiiiiiiiiic e 832
28.34. PG St At _SI T U VIBW oo 833
28.35. Additional StatistiCS FUNCHIONSuuuiiiiiiiieiieii e e s 833
28.36. Per-Backend Statistics FUNCHONSuuiiviiiiieicii e e 835
28.37.pg_stat_progress_anal YZe VIEWcoccoiiiiiiiiiii i 836
28.38. ANALY ZE PhaSES ...oevvuieeiiiii ettt ettt e e e e e et e e e et e e e et e e e e aaa s 837
28.39. pg_stat_progress_Cluster VIEWcooooi i 838
28.40. CLUSTER and VACUUM FULL PhaSEScccuuiiiiiiiieiiiie e 839
28.41. pg_stat _progress _COPY VIBW .o e e 839
28.42.pg_stat_progress_create_i NdeX VIBWcccoveviiiiiiiiiiiiiecieeceeee e, 840
28.43. CREATE INDEX PhESES ...ceuuiiiiiiiiietiiie ettt e e e et e e et e e et e e e et 841
28.44. pg_stat_progress VAaCUUMVIBWccuuviiiiiciiiieiii e e e e e e e e e e e eaans 842
28.45. VACUUM PhESES ..ccvtuieiiiii ettt ettt e e et e e et e e e et e e e et e e e e et 842
28.46. pg_stat _progress_basebackup VIiewcccooeviiiiiiiiiiini e, 843
28.47. Base BaCkup Phasescouviiii e 844
28.48. BUIlt-iN DTTaCe PrODEScovviiieeiei e 845
28.49. Defined Types Used in Probe Parameterscevviiiiiiiicii e 851
31.1. UPDATE Transformation SUMIMAIYccuuieiuueeiieeiiiieeieeeieeeeieeeie e s eesaieeanneeeens 873
34.1. SSL MOOE DESCIIPLIONSivvieiiieeei e e et e e e e e e e e e et e e e e et e e et e e eanaees 982
34.2. Libpg/Client SSL FilE@ USAQE ... cvvuiiiiieiii et e e e e e e e e e e e aae e 982
35.1. SQL-Oriented Large Object FUNCLIONSccouuiiiiii e 1002
36.1. Mapping Between PostgreSQL Data Typesand C Variable TYPeScceevvvvvvveeinnnnns 1018
36.2. Valid Input Formats for PGTYPESdat € from ascc.ccceveviiiiiiiiieiii e 1036
36.3. Valid Input Formats for PGTYPESdat € fmt_asCccoeveviiiiiiiiiin e 1038
36.4. Valid Input Formats for rdef mtdat €cooviiiiiiiiiiii e 1039
36.5. Valid Input Formats for PGTYPESt i mest anp_from asccccoeeevieviiiiieennennnn. 1040
37.1.informati on_schema_catal og name Columns............cccooeviieiiiiiiinccieeenn, 1118
37.2.adm ni strabl e rol e_authorizations Columns.............ccoeeeviiiiiineennneennn, 1118
37.3. applicabl e rol s ColumNSooiiiiiiiii e 1118
37.4. At L ri DUt €S COlUMNS ...uiiiiiiii e e e eeeai e e 1119
37.5.charact er _Set'sS COIUMNScuuiiiiiiiiii e e e e e e e 1121
37.6. check_constraint_routine_usage Columns..........c.cccovviiiiniiiiieiiineeinneennnn, 1122
37.7.check_constrai Nt'S ColUMNScoceuuiiiiiieiie e e e e e e 1122
37.8. COl 1 @t i ONS COIUMNSuuiiiiiii e e e et e e eai e aees 1123
37.9.col lation_character_set _applicability Columns...........cc.ocovvernnnnn. 1123
37.10. col um_col umMm_usSage COlUMNSuiiiiiii e e e e e 1124
37.11. col um_domai N_UuSage COIUMNSueiiiiiii e e e e e e eaa e 1124
37.12. col UMM_0Pt i ONS COlUMNS .. ccuuiiii e e e e eeas 1125
37.13. col um_pri vil eges ColuMNSc.ooiviiiiiiiie e 1125
37.14. col um_udt _uSage COlUMNScuuuiiii e e 1126
37.15. COl UMMS COIUMNS .. .iiiiiiee ettt e e e et s e e e et e e e e et e e e eareaeaeees 1126
37.16. constrai nt _col unm_usage ColUMNSccoevviiiiiiiiiiiiieeie e e 1129
37.17.constraint _tabl e _usage ColumMNSccoeeiiiiiiiiiiiiii e 1130
37.18. data_type privileges ColumMNSccooviiiiiiiiiiiiiie e e e 1131
37.19. domai n_constrai Nts ColUMNScooviiiiiiii i 1131

XXVi

PostgreSQL 16.9 Documentation

37.20. domai n_udt _uSage COlUMNSc.uuiiiii e e 1132
37.21. dOMBI NS COIUMNSiiiiiiieeiii et e et e et e e e e et e e e e et e e e eareaeaeees 1132
37.22. el ement _t yPES COIUMNSoviiiiiieei e e e e e e e aeas 1134
37.23. enabl €d_r ol €S COlUMNSc.uiiiiiiii e e e 1136
37.24.forei gn_data wrapper_opti ons ColumnSc.cccveviiiiiiiieeiiiieeiiieeineeeenn 1136
37.25. foreign_data wappers ColUMNScooeivieiiiiiiiii e 1137
37.26.foreign_server_opti ons ColUMNScocouuieiiiiiiiiiieiii e e 1137
37.27.forei gn_servers COlUMNSoiiiiiiiiiii e e 1137
37.28.foreign_tabl e options ColuMNSccocoviiiiiiiiii e 1138
37.29.foreign_tabl €5 ColUMNScccuuiiiiiiiii e 1138
37.30. key_col umm_usage COolUMNSoeiiiiiiii e e e e e e e e ees 1139
37.3L. par anBt €r'S COIUMNScouiiiii e e e e e e e e e e e e eaes 1139
37.32.referential _constraints ColUmMNS.........ccocoouiiiiiiiiiiiiiiii e 1141
37.33.role_colum_grants ColUMNScoovuiiiiiiiiiii e 1142
37.34.role_routine _grants ColUMNScccouuieiiiieiiiiieiii e ee e e e eaae e 1142
37.35.ro0le_table grants ColUMNSccooviiiiiiiiiiii i 1143
37.36.r0l e_udt _grants COlUMNSoeiiiiiiii e e 1144
37.37.r0l e_usage_grants COolUMNSccoeeviiiiiiiiiiiii e e e e 1144
37.38. routine_col umm_usage ColUMNSc.vviiiiiiiiieiie e e e 1145
37.39. routine_privileges ColUMNSooeiuiiiiiiiiiiii e 1146
3740.routine_routine_usage ColUMNSccoeeuiiiiiiiiiii e 1146
3741 routine_sequence_usage COlUMNScocouuieiiiiiiiiiieiii e e e e e 1147
3742. routine_tabl e _usage ColUmMNSc.cc.iiiiiiiiiiiicii e 1147
37.43. T 0UL T NES COIUMNS ...eeiiiieeiii e et e e et e e et e e e et e e e eatnneaeee 1148
37.44. schemBt @ COIUMNSuuiiiii e e e e e e e e et e e e eae e aeees 1152
37.45. SEqUENCES COIUMNSuuiiiiiiiii e e e e e e e e e e e eaes 1153
37.46.sql _features COlUMNScc.iiiiiiiii e 1153
3747.sql _inplementation_info Columns........cccoooviiiiiiiiiiicci e 1154
37.48. 51 _Parts COIUMNSccouniiiiii i e e e e e e eaes 1154
37.49. 5l _Si Zi NG COIUMNSiiiiieii e e e e e e e e e aes 1155
37.50.tabl e_constrai Nts COolUMNSccuiiiiiiiiiiiii e 1155
3751 tabl e privileges ColUmMNScccocoiiiiiiiiiiii e 1156
37.52. t @bl €S COIUMNSoiiiii e eeee 1157
37.53. t ranSf Or B COIUMNS ...t e et e e et e eees 1157
37.54.triggered _update_col ums ColumMNSccoevviiiiiiiiiiii e, 1158
37.55. 111 gOEI'S COIUMNScutniiii e e e e e e e e e e e e et e et e et e e aa e eeas 1158
37.56. udt _priVvil eges COolUMNScocuiiiiiiieii e e e e eaas 1160
37.57. usage_priVvil eges ColUMNScociuiiiiiiiiii e e 1161
37.58. user _defined types COolUMNScoeiuiiiiiiiiiii e 1161
37.59. user _mappi NG_0opti ONS COlUMNScovviiiiiieiii e e e 1163
37.60. user _mBpPi NGS COIUMNSc.uiiiiieee e e e e e e e e aeas 1163
37.61. vi ew_col um_usage ColUMNSccuiiiiiiiiiiiecii e e e 1164
37.62. view routine_usage COlUMNScoeiiiiiiiii i e e 1164
37.63. view tabl e_usage ColumNSc.ccoiiiiiiiiiii e 1165
37.64. Vi @WS COIUMNS ..uuiiiiiii ettt e et e et e e et r e e e et e e e e aaaaeeenees 1165
38.1. POIYMOIPRNIC TYPES . ovvniiiiieeie ettt e e e e e e e e e e e e e e e st e e et e e e e eaens 1174
38.2. Equivalent C Types for Built-in SQL TYPEScvvvniiiiiiiiieeeeee e e e 1200
G T T O I (= IS = (=0 == PP 1236
K o oS I 1 = = 1= PP 1236
38.5. GIST Two-Dimensional “R-treg” StrategieSuveiuuieiiiiieiiieeiiiieeie e e e e 1236
38.6. SP-GIST POINt SIrALEJIESvuieeiiiiieeeeii ettt e e et e e et e e e e 1236
I I € N N - VS = =0 == RN 1237
38.8. BRIN MiNMaX SIralEOIES .. ovvuuiiinieiiiieiie e et e e e e e e e et e e e e e e e e e e e e et eeaaeeeanas 1237
38.9. B-Tree SUPPOrt FUNCLIONScoviiiiicii e e e e e e e e e e e e e 1238
38.10. Hash Support FUNCLIONSiiiiieiie e e e e e e e e e e e 1238
38.11. GiST SUPPOIt FUNCLIONSiiviciii e e e e e e e e e e et e e e e eeen 1238
38.12. SP-GiST SUPPOIt FUNCHIONScvuiiiieiieei e e e e e e e e e e e e e e e aaaas 1239
38.13. GIN SUPPOIt FUNCLIONSiitciiis e e e e e et e et e e e e eens 1239

XXVii

PostgreSQL 16.9 Documentation

38.14. BRIN SUPPOIt FUNCLIONSuuiiiiiiii e e e e e e e e e e e e e e e st e e et e e e eeaens 1240
40.1. Event Trigger Support by Command Tagoevvveiiiieiiiieeii e e e e e e e 1272
43.1. Available DiagnostiCS ItEMSiiviiiiie e e e e e e 1326
43.2. Error DIiagnoStiCS [TBIMS . .ouuiiii i e e e e et e e e eaas 1340
292. Policies Applied by Command TYPE ...c.uueiiuiiiiii e e 1737
293. pghench Automatic Variablesoiiiie i 2074
294, PYDENCN OPEIGIOISevvieeii et et e e e e e e e e e e e e et e e e e e et e e aaeeeens 2076
A ST 0o |o1= o 1o a I U o 1 o P 2078
53.1. SYSEEM CalAlOOS ... vvvneeiieiiiieei et e e e e e e e e e e e e e e e et e e et e et e e e e e aaaaa 2250
53.2. pg_aggregat @ COlUMNScouuiiiiii e e e e e e e e e e e et eeaneees 2252
TG T o o T =1 41] 1070 TP 2253
53.4. pg_anmDpP COIUMNS ...t e e e e e e e et e e e e eaas 2254
53.5. Pg_anPr OC COlUMNS .. .cuuiiiiii et e et e e e e e e e e e e e et e e et e eaa e eaes 2255
53.6. pg_attrdef ColUMNSco.uiiiiii e 2255
53.7.pg_attribut @ ColUMNSccouiiiiii e e e 2256
53.8. pg_aut hi d COlUMNSiiiiiiiii e e e e e e e e e 2258
53.9. pg_aut h_menbers ColUMNSc..oiiiiiiiiiii e e e eaes 2259
53.10. PG_CASt COIUMNSuiiii i e e e e st e et e e e e eaens 2260
53.11. PG _Cl @SS COlUMNS .. .ceuiiiiii e e e e e e e e e e e e e eeas 2260
53.12. pg_col 1 ati on COlUMNScouuiiiiiiii e e 2263
53.13. pg_constrai Nt COIUMNSc.uiiiiiiei e e e e e e aeas 2264
53.14. pg_CONVETr Si ON COIUMNSouiiiiiiieeiiee e e e e e e e e e e e e eaeas 2265
53.15. pg_dat abase COolUMNSco.uiiiiiiiii e e e e e e 2266
53.16. pg _db role_setting ColUMNScoeiuiiiiiiiiiii e 2267
53.17. pg_defaul t _acl ColUMNSccoiiiiiiiiii e e 2268
53.18. pg_depend COlUMNSccuuiiiiiieiiie e e e e e e e e e eaes 2268
53.19. pg_descCription COlUMNSccouuuiiiiiiei e e e e e e eeas 2270
53.20. PG_ENUMECOIUMINSuiiiiiii e e e e e e e e e e e e et e e st e e et e e eaeeaens 2271
53.21. pg_event _trigger COolUMNScoooiiiiiiii e e 2271
53.22. pg_ext ensi 0N COIUMNSccouiiiiiiiiii e e e e 2272
53.23. pg_foreign_data wapper ColUmMNS........cccoevviiiiiiiiiiiiieiii e e 2272
53.24. pg_forei gn_server COolUMNSc.ooiiiiiiiiiiieiii e e e e 2273
53.25. pg _foreign_tabl @ ColUMNSccocouuiiiiiiiiiii e 2273
53.26. PG_i NAEX COIUMNS .. .ceuuiii e e e e e e e e et e et e aan e eeas 2274
53.27. PG I NNEritS COlUMNScouiiiiiiiie e e e e e e e e e e e aen 2275
53.28. pg_ i Nit _Privs COUMNSciiiiiiieci e e e e e eeas 2276
53.29. pg_| anguage COlUMNScouuuiiiieeiii e ee e e e e e e e e e et e e e e aaeeeeen 2276
53.30. pg_| argeobj €Ct COlUMNScccuiiiiiiiii e 2277
53.31. pg_l argeobj ect _netadat a ColumNScocevviiiiiiiiiiiieiie e 2277
53.32. pg_NamESPACE COIUMNSciviiiiiiee e e e e e e e 2278
53.33. PG_0PCI @SS COIUMNSiiiiiiiii e e e e e e e e e e e eaes 2278
53.34. pg_oper at Or COlUMNSciiiiiiie et e e e e e e e e e et e e e eaaeeees 2279
53.35. pg_opfam |y COlUMNScciuiiiiiieee e e e e e e e een 2280
53.36. pg_paranet er _acl ColUmNScccooiiiiiiiiiiii e 2280
53.37.pg_partitioned tabl @ ColUMNSc.coiiiiiiiiii i 2280
53.38. Pg_POI i CY COIUMNSouiiiiiiiii e e e e e 2281
53.39. PG _PrOC COIUMNSuiiiiciii e e e e e e e e e e st e et e e aaeeaens 2282
53.40. pg_publicati on ColUMNScccuiiiiiiiiii e e eaas 2284
53.41. pg_publication_namespace COlUMNSc.couiiiiiiiiiiiiniiii e 2285
53.42. pg_publication_rel ColumNScccocoiiiiiii i 2285
I I o To T 4= Y o L= T @] 11 1 410 TP 2286
53.44.pg replication_originColumnscccocouiiiiiiiiiiiiiiie e 2286
53.45. PG reWr i t € COIUMNSuiiiiiiiii e e e e e e e e e e eaes 2286
53.46. pg_secl abel ColUMNScouuiiiiiiiiii e e e 2287
53.47. pg_SEqUENCE COUMNScuuiiiiieieie e e e e e e e e e e e e e e e e et e e e eaneeeen 2288
53.48. pg_shdepend ColUMNSco.uiiiiiiiiiii e e e e een 2288
53.49. pg_shdescri pti on ColUMNSociiiiiiiiiii e e 2289
53.50. pg_shsecl abel Columnsccooiiiiiiiii e 2290

XXVili

PostgreSQL 16.9 Documentation

5351 pg _stati StiC COUMNSociiiiiii e e 2291
53.52. pg_stati stic_ext ColUMNSccoeiiiiiiiiiii e e 2292
53.53. pg_statistic_ext_data Columnsccocouiieiiiiiiiiiiiii e 2293
53.54. pg_subscription ColUMNSciiiiiiiiii e 2293
53.55. pg_subscription_rel ColumNSc.cccoiiiiiiiiiiiici e 2294
53.56. pg_tabl espace COlUMNSccouuiiiiiieii e e 2295
53.57. pg_transf orMCOIUMNScoouiiiiiii e 2295
53.58. PG _tri gger COIUMNScouuiiii e e e e e e e e e e ees 2295
53.59. pg ts _confi g COlUMNSccovniiiiii e 2297
53.60. pg_ts_confi g _map ColUMNSoeiiiiiiiiiie e e 2297
53.61L. PG tS_di Ct COIUMNS ...uuiiiiiiii e e e e e e 2298
53.62. pg_ts_parser COIUMNScouiiiiiiiiii e e aeas 2298
53.63. pg_ts tenpl at @ ColUMNSccoouuiiiiiiiiii e e 2299
53.64. PG _tYPE COIUMNS ..uuiiiiiiii e e e e e e e e e e e e aens 2299
53.65. t ypCat €00TY COUESuuiiiii i e e e e e e e 2302
53.66. pg_user _mappi NG COIUMNSoiiiiii e e 2303
oY IS Y= (= BV AT = TP 2304
54.2. pg_avai |l abl e_ext ensi 0Ns ColUMNScccoieiiiiiiiiiieii e 2305
54.3. pg_avai l abl e_ext ensi on_versi ons Columnscccooevviieiiiieiiiiiecineeennn. 2305
54.4. pg_backend_nenory_cont ext s ColUmNSc.ccceveiiiiiiiiiiiiiie e 2306
54.5. pg_CONfi g COlUMNScouiiiiii i e e e e e e e e eaes 2307
54.6. Pg_CUIrSOr'S COIUMNSuuiiiiiiiiiie e e e e e e e e e e e e een 2307
54.7.pg_file _settings ColUMNScccooiiiiiiiiiiiiii e 2308
54.8. PG_gr OUP COIUMNSiiiiiii e e e e e e e e e e e e e et e e e e ean e eees 2309
54.9. pg_hba file rul es ColumNScc.ccuiiiiiiiiiiiiiii e 2309
54.10. pg_ident _file_mappi Ngs ColUMNScocovuiiiiiiiiii e 2310
54.11. pg_i NAEXES COIUMNSiiiiiiiii e e e e e e e e e e e eaes 2310
oY b o To R o Yo T @] 11 1 410 TP 2311
54.13. pg_MBAt Vi WS COIUMNScutiiiiieiii e e e e e e e e e e e e e e e eaneeeen 2314
54.14. pg_POl i Ci €S COlUMNScvuiiiiiieii e e e e e e e e e e e eeen 2314
54.15. pg_prepared_stat ement's ColUMNSc.couieiiiiiiiiiieii e 2315
54.16. pg_prepared _Xact s COlUMNSc.oiiiiiiiiiiiiei e e e e 2315
54.17. pg_publication_tabl es ColumNScccoieiiiiiiiii e 2316
54.18.pg_replication_origin_status ColumnS.........cccoeeviiiiiiiieeiiiieciineeieeeeenn, 2316
54.19. pg_replication_slots ColUMNSc.iviiiiiiiiiieiie e 2317
54.20. PG T 0l €S COIUMNS .. .couuiiiiieiiii e e e e e e e e e e e e e et e e aa e eeas 2318
54.21. PG _r Ul €S COIUMNSouviiiii i e e e e e e e e e e e et e et e e ea e eeas 2319
54.22. pg_secl abel s COlUMNScc.iiiiiiiii e 2319
54.23. pg_SequenCes COIUMNScc.iiiiiiiiii e e e e e e 2320
54.24. pg_SettiNgGS COIUMNScouiiiiiiii e e e e e e e e e e een 2321
54.25. pg_Shadow COlUMNSccuuiiiiiiii e e 2323
54.26. pg_shmem al | ocat i oNs COlUMNSooiiiiiiiiiiiciie e 2324
54.27. PG ST At'S COlUMNS .. .ceviiiii e e e e e e e e e e e et e e aa e aeas 2324
54.28. pg_stats_ext COlUMNScc.oiiiiiiiiii e 2326
54.29. pg_stats_ext _exprs COlUMNSooeiiiiiiiii i e 2327
54.30. pg_tabl €5 COlUMNSccouniiiiiiii e e 2328
54.31. pg_ti mezone_abbrevs ColUMNSc.cc.oiiiiiiiiiii e e e 2329
54.32. pg_ti mezone_Nanmes COlUMNSc.uiiiiiiiiiii e e e e 2329
54.33. PG _USEI COIUMNS ...ttt e e e e e e e e et e e st e et e e e eeaens 2329
54.34. pg_user _mappi NGS COIUMNSoiiiiiiii e e 2330
54.35. PG Vi €WS COIUMNS .. .cuuuiiiiiiiie e et e e e e e e e et e e et e st e e et e eaaneeeeas 2331
68.1. BUilt-iN GIST OpErator ClaSSESuuiiiuueiiiieiiiiieiii e et e e e e e e e et e e e e et e e aanaaes 2469
69.1. BUilt-in SP-GIST OpErator ClaSSESuicivuiiiieeiiieeiiieeeiieeeeie e e e ee e e e e saeeaanaes 2486
70.1. BUilt-iN GIN OpErator ClaSSESc.uuiiiiiieiiiieiiiie e e et e e e e e e e e e e e e e et eeanaeens 2499
71.1. Built-in BRIN Operator ClaSSESucvvuuiiiiiieiiiieiiiieeiii e e eeie e s e s e e eeet e e sanaeens 2507
71.2. Function and Support Numbers for Minmax Operator ClasseScovevvveviiiieiineennnnn, 2516
71.3. Function and Support Numbers for Inclusion Operator Classescccvvevvvvivineeninnnns 2516
71.4. Procedure and Support Numbers for Bloom Operator Classescoccvvveevviiviinierinnns 2517

XXiX

PostgreSQL 16.9 Documentation

71.5. Procedure and Support Numbers for minmax-multi Operator Classesccuvveevnnnnns 2518
73.1. CoNteNtS Of PCDATA L. oeiiiiieeii ettt e e e e et e e et e e e et r e e e et neeeenens 2521
73.2. P08 LAYOULuuvieiiiiie et 2527
73.3. PageHeaderData LayOULcc.uiiiiiiiiii e e e e e e e et e e e eanes 2528
73.4. HeapTupleHeaderData LayOuLceeeuniiiiieiiii e e e e e e e e e e aaas 2529
A.L POSIOreSQL Error COUESuuiiiiieiiii e et ee et e e e e e e e e e e e e e e e e e eaes 2561
230 Vo0 11 I = 0 1= <SP SPPN 2572
B.2. Day Of the Week NAMEScoiiiiii e 2572
B.3. Date/Time Field MOGIfIErS ...ccouuiiiiiiii e 2572
C.L. SOL KEBY WOIASieiiiii et e e et e e e e e e e et e e et e e et e e et e e et e eeanaes 2578
F.1 adm NPacK FUNCHIONS ..o e e e e e e e e e een 2690
F.2. Cube External REPreSeNtalionScccuuieiiieiiii e e e e e e e e e e e e e e e e eaens 2714
[R 0 oL @ o= - o] ¢ TP 2714
Fod. CUDE FUNCLIONS ... ittt e e et e e e et e e e e et s e e e eatnneaeees 2715
F.5. Cube-Based Earthdistance FUNCLIONSoooviiiiiiiiiiiieecc e 2754
F.6. Point-Based EarthdiStance OPeratorsc..uviiiieiiiiieiiieeie e e e e e e e 2755
O 1 TSY o T @ o= = o) £ P 2765
F.8. NSt Or @ FUNCHONS ..oiiiiicic e e 2766
FO. intarray FUNCHONS ..o e e e e e e e ees 2774
[(ORI oL = L = | VA @ o= = o) £ 2775
I Y I I 7 = W Y/ o= PP 2778
[A =Y o I ¥ o L PR 2779
[T I B YT @ o= (o) £ P 2785
[o I O T W o PP 2787
F.15. pg_buffercache Columnsccoooiiiiiiiiii i 2805
F.16. pg_buf fercache_sumary() Output ColUMNSc.coevviiveriieiiiieeiiieeieeeaenn, 2806
F.17. pg_buf f ercache_usage count s() Output Columnscceeeviviiiinneinnnnns 2806
F.18. Supported Algorithms fOr Crypt () oeeeeeeiieii e 2810
F.19. Iteration Counts fOr CrYPL () covrieriiiiiie e e e 2810
F.20. Hash AlQOrithm SPEEASiviiii e e 2811
F.21. pgr oW 0cks OUPUL COIUMNScovuiiiii e e e e e aens 2823
F.22. pg _stat_statenments COlUMNSccooouiiiiiiiiii e 2825
F.23. pg_stat_statenments info ColumMNS..........ccooiuiiiiiiiiiiii e 2829
F.24. pgstatt upl @ OUtpUt COIUMNSc.uuiiiiieii e e e e e eens 2833
F.25. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiiieiiie e e e 2836
F.26. POt FgMEUNCHONS .. couiiiii e e e e e e e e e eaaees 2840
F.27. PO_t I OMOPEIEIOIS ... e e e e eans 2841
F.28. seg External REPresentationsSccuuiiiiieiii e e e e e e e 2863
F.29. Examples of Valid SEQ INPULo.uuiiiiiii e e 2863
F.30. SEO GiST OPErAOrS . .evueiteeiit et ettt et e e s e e e et e e et e e et e e et r e et e ean e eateesaneeenns 2863
[C IS~ oo = | I 1 Tox) 2871
F.32. t abl €f UNC FUNCHONScuiiiiiiiiie e 2877
F.33. CONNECE DY Palrameterscouuiiiiiiiii e e e e e 2884
F.34. FUNCtions fOr UUID GENEIAtioNuuieiiiiiieeeiiiiee et seeeeiineeeeeiin s e e eeai e eeerinaeeees 2895
F.35. Functions Returning UUID CONStANESccuueiiiieiiiiieiiieeiiieeeie e e e e e e eaneeeaen 2896
F.36. XM 2 FUNCLONS ...t e e e e e e e e et 2897
F.37. xpat h_t abl @ ParameterScoouiiiiiiei e 2898
K.1. PoStgreSQL LimitalionSccvuueiriieiiiieeiie e e et e e ee s e e e e e et e e st e e et eeaaeeenns 2919

XXX

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 155
8.2. USING the DOOI €8N TYPE ... 168
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 176
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin, 321
10.1. Square Root Operator TYpe RESOIULIONoveveiieiiiiii e 418
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 419
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 419
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 420
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 420
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 423
10.7. Variadic FUNCtioN RESOIULIONcviiieieiiiii e e 423
10.8. Substring FUNCtion Type RESOIULIONiiiiiiiiiiiiie e 424
10.9. char act er Storage TYPE CONVEISIONcceeuuneiiiiieeieiieeeeeti e eeetis e e eeti e e eeriaeeees 425
10.10. Type Resolution with Underspecified Typesin @ Unionoeeeevviveieiiiieeiiiinnenes 426
10.11. Type Resolution in @ SImMple UNionooooiiiiiiii e 426
10.12. Type Resolution in @ Transposed UNIONcoouuuuiiiiiiiieiiiii e e 427
10.13. Type Resolution in @ Nested UNiONcc.uuuieiiiiiieiiiiiieeeeei e 427
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 436
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocoeviviiiiiineeiinnnnnn. 437
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 438
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccccveveeviiinneeiennnnn. 438
21.1. Example pg_hba. conf ENtriEsiiiiiiiiiii e 694
21.2. An Example pg_i dent . conf File ... 698
34.1. libpg EXample Program Luuoeiiiieieei et 986
34.2. 1ibpg EXample Program 2oiiiiiieeei e 988
34.3. libpg EXample Program 3c.oue e 991
35.1. Large Objects with libpg Example Programooeeeieiiieiiiiinieeeeeeeie e 1003
36.1. Example SQLDA PrOQraMciieii ettt ettt e e e e eeeaa s 1056
36.2. ECPG Program Accessing Large ObJECESccuvuiiiiiiieeiiiii et 1070
42.1. Manua Installation of PLIPEITcoiiiiiiiiii e 1307
43.1. Quoting Vaues in DYNamiC QUENTESuuiiiieiiiaeieiiie et eeei e 1324
43.2. Exceptions With UPDATE/I NSERToiiiiiiiieiiii e ettt 1339
43.3. A PL/PgSQL Trigger FUNCHIONuniiiiiieecie et 1353
43.4. A PL/pgSQL Trigger Function for AUitingcoeeveieiiminieiiiiieeee e 1354
43.5. A PL/pgSQL View Trigger Function for AUditingccoovieiiiiiiniiiiicceieeceeenn 1355
43.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccceeieeee. 1356
43.7. Auditing with Transition Tablesccoeuiiiii e 1358
43.8. A PL/pgSQL Event Trigger FUNCLIONooiiiiiieiiiii et 1360
43.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuuiiiiiiiieiiiiiieeciieeeeeiiee 1368
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1369
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[I 0TSO U UUT PP 1370
43.12. Porting a Procedure from PL/SQL to PL/PGSQLuvviiiiiiiiiiiiie e 1372
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2757

XXXIi

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteersin parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitps://dsf .berkel ey.edu/postgres.htm

XXXii

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of Californiaat Berkeley. With decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. Theinitial con-
cepts for the system were presented in [ston86], and the definition of the initial data model appeared
in [rowe87]. The design of the rule system at that time was described in [ston87a]. The rationale and
architecture of the storage manager were detailed in [ston87h)].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsequent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at severa universities. Finaly, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM 3) picked up the code
and commerciaized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project described in [ston92].

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley POST -
GRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres9d5 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the magjor enhancements:

e The query language PostQUEL was replaced with SQL (implemented in the server). (Interface li-
brary libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see be-
low), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

» A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

» A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 https://www.ibm.com/anal ytics/informix
3 https://www.ibm.com/

XXXl

https://www.ibm.com/analytics/informix
https://www.ibm.com/
https://www.ibm.com/analytics/informix
https://www.ibm.com/

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Postgresisstill considered an official project name, both because of tradition and because people find
it easier to pronounce Postgres than PostgreSQL.

The emphasis during devel opment of Postgres95 was on identifying and understanding existing prob-
lemsin the server code. With PostgreSQL , the emphasi s has shifted to augmenting features and capa-
bilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should
be taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki* contains the project's FAQ® (Frequently Asked Questions) list, TODO®
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site’ carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

4 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
5 https://wiki.postgresgl.org/wiki/Todo

7 https://www.postgresgl.org

XXXIV

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXV

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CRE-
ATE TABLE and | NSERT statements, if the output should depend on the data in the tables. We
do not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
Inpsql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to ver bose so that all
details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do
not keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXVi

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 16.9 we will almost certainly tell you to upgrade. There are many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article® that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsql - bugs@ i sts. post -
gresql . or g>. You arerequested to use a descriptive subject for your email message, perhaps parts
of the error message.

Another method is to fill in the bug report web-form available at the project's web site”. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

8 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
® https://www.postgresql.org/

XXXVil

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to <se-
curity@ostgresql.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql -sql @i st s. post -
gresgl . org>or<pgsql -general @i sts. postgresql.org>. Thesemailing listsarefor
answering user questions, and their subscribers normally do not wish to receive bug reports. More
importantly, they are unlikely to fix them.

Also, please do not send reports to the developers mailing list <pgsql - hackers@i st s. post -

gresql . or g>. Thislistisfor discussing the development of PostgreSQL, and it would be niceif we
could keep the bug reports separate. We might choose to take up a discussion about your bug report
onpgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql -docs@i sts. post gresql . or g>. Please be specific about what part of the docu-
mentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to <pgsql - hacker -
s@i sts. postgresql . or g>,sowe(andyou) canwork on porting PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered.
If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXXViii

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming ex-
perience is required. This part is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 3
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 11
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 13
2.8 UPUELES ...ttt 15
2.9, DEIBHIONSviieiee et e aaaaas 15
I Y0 (V7= o= s (1 = 17
G I 111 (oo (U o 1 o [PPSR 17
I VAT = YRS USPRPRP 17
3.3 FOrEIgN KBYS ..ttt 17
I I =01 o o 1 18
3.5, WINAOW FUNCLIONScviiviiiiii e ans 20
I ST 101015 g1 7= ot PSP 23
G I o o Tox 11 Lo o T 24

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access

PostgreSQL .

If you are not sure whether PostgreSQL is already available or whether you can useit for your exper-
imentation then you can install it yourself. Doing so is not hard and it can be a good exercise. Post-
greSQL can beinstalled by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be atext-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are devel oped
by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it
starts (“forks’) a new process for each connection. From that point on, the client and the new server
process communicate without intervention by the original post gr es process. Thus, the supervisor
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

Getting Started

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation in-
structions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/
tnp/.s. PGSQL. 5432" failed: No such file or directory

Is the server running |locally and accepting connections on
t hat socket ?

This means that the server was not started, or it is not listening where cr eat edb expects to contact
it. Again, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/
tnp/.s. PGSQL. 5432" failed: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 22 for help creating accounts. Y ou will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assighed a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: error: database creation failed: ERROR perm ssion
deni ed to create database

Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you arethe owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psqgl, which alows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possihil-
ities are discussed further in Part 1V,

You probably want to start up psql to try the examples in this tutorial. It can be activated for the
nmy db database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. Y ou already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:
psql (16.9)

Type "hel p" for help.

mydb=>

Thelast line could also be:

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you instaled the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

Post greSQ. 16.9 on x86_64-pc-|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

Thepsql program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psqgl prompt.) The full capabilities of psql are documented in psgl. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not provide thosefiles.) To use those
files, first change to that directory and run make:

$ cd .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\ i command readsin commandsfrom the specified file. psql 's- s option putsyouin single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are anumber of other ways of organizing databases. Files and directories on Unix-like operating sys-
tems form an example of ahierarchical database. A more modern development is the object-oriented
database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter this into psqgl with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even al on one line. Two dashes (“- - ")
introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case-insen-
sitive about key words and identifiers, except when identifiers are double-quoted to preserve the case
(not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, smal | i nt, real , doubl e precision,
char (N),varchar(N),date,time,tinestanp, andi nt erval , aswell as other types of
genera utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

);
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994- 11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for thistutorial we will stick to the unambiguous format shown here.

The poi nt type requires a coordinate pair asinput, as shown here:

I NSERT INTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The SQL Language

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;

| NSERT | NTO weat her (date, city, tenmp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many devel opers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter al the commands shown above so you have some data to work with in the following
sections.

You could aso have used COPY to load large amounts of data from flat-text files. Thisis usualy
faster because the COPY command is optimized for this application while allowing lessflexibility than
I NSERT. An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process,

not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

Toretrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), atable list (the
part that lists the tables from which to retrieve the data), and an optiona qualification (the part that
specifies any restrictions). For example, to retrieve al the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “al columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenp_hi | prcp | dat e
--------------- T T e T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
VWHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = ' San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T I O
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

10

The SQL Language

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent resultsby using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed onetable at atime. Queries can access multipletablesat once,
or access the same table in such away that multiple rows of the table are being processed at the same
time. Queriesthat access multipletables (or multipleinstances of the sametable) at onetimearecalled
join queries. They combine rows from one table with rows from a second table, with an expression
specifying which rows are to be paired. For example, to return all the weather records together with
the location of the associated city, the database needsto comparetheci t y column of each row of the
weat her tablewith the nane column of al rowsintheci ti es table, and select the pairs of rows
where these values match.2 This would be accomplished by the following query:

SELECT * FROM weather JO N cities ON city = nane;

city | temp_lo | tenp_hi | prcp | dat e nane
| location
--------------- T S LT Jpeppp
Fom e e e e o oo Fom e e e e o -
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(2 rows)

Observe two things about the result set:

» Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

 There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tables are concatenated. In practice thisis undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, temp_hi, prcp, date, |ocation
FROM weat her JON cities ON city = nane;

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

3 Thisis only a conceptual model. The join is usualy performed in a more efficient manner than actually comparing each possible pair of
rows, but thisisinvisible to the user.

11

The SQL Language

SELECT weat her.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her JO N cities ON weather.city = cities.nane;

It iswidely considered good style to qualify al column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can aso be written in this form:

SELECT *
FROM weat her, cities
WHERE city = nane;

This syntax pre-dates the JO N/ON syntax, which was introduced in SQL-92. The tables are simply
listed in the FROMclause, and the comparison expression is added to the WHERE clause. The results
fromthisolder implicit syntax and the newer explicit JO NONsyntax areidentical. But for areader of
the query, the explicit syntax makesits meaning easier to understand: Thejoin condition isintroduced
by its own key word whereas previously the condition was mixed into the WHERE clause together
with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON weather.city =
cities. nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T T L e
o e R
Haywar d | 37 | 54 | | 1994-11-29 |
|
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the | eft table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
comparethet enp_| o andt enp_hi columns of each weat her row tothetenp | o andt em
p_hi columnsof al other weat her rows. We can do this with the following query:

12

The SQL Language

SELECT wl.city, wl.tenp_lo AS |ow, wl.tenp_hi AS high,
w2.city, w2.tenp_lo AS |low, w2.tenp_hi AS high
FROM weat her wi JO N weat her w2
ONwl.tenmp_lo < w2.tenp_lo AND wl.tenp_hi > w2.tenp_hi;

city | lTow | high | city | low | high
--------------- e
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table aswl and w2 to be able to distinguish the left and right side
of thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, .g.:

SELECT *
FROM weat her w JON cities ¢ ONw.city = c. naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Likemost other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes asingle result from multipleinput rows. For example, there are aggregatesto com-
putethecount , sum avg (average), max (maximum) and m n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(tenp_| o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rowswill beincluded in the aggregate calculation;
so obvioudly it hasto be evaluated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

13

The SQL Language

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the number of readings and the maximum low temperature observed in each city with:

SELECT city, count(*), max(tenp_l o)
FROM weat her
GROUP BY city;

city | count | max
_______________ e
Haywar d | 1| 37
San Franci sco | 2| 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetablerows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, count(*), max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l 0) < 40;

city | count | max
_________ T B,
Hayward | 1| 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Findly,
if we only care about cities whose names begin with “S”, we might do:

SELECT city, count(*), max(tenp_l o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city;

city | count | max
_______________ T .
San Franci sco | 2| 46
(1 row

The LI KE operator does pattern matching and is explained in Section 9.7.

Itisimportant to understand the interaction between aggregates and SQL 's WHERE and HAVI NGclaus-
es. Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rowsbefore
groups and aggregates are computed (thus, it controlswhich rows go into the aggregate computation),
whereas HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE
clause must not contain aggregate functions; it makes no senseto try to use an aggregate to determine
which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause always contains
aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use
aggregates, but it's seldom useful. The same condition could be used more efficiently at the WHERE

stage)

In the previous example, we can apply the city namerestriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping
and aggregate calculations for all rows that fail the WHERE check.

14

The SQL Language

Another way to select the rows that go into an aggregate computation isto use FI LTER, whichisa
per-aggregate option:

SELECT city, count(*) FILTER (WHERE tenp_lo < 45), max(tenp_| 0)
FROM weat her
GROUP BY city;

city | count | max
_______________ .
Haywar d | 1] 37
San Francisco | 1| 46
(2 rows)

FI LTER is much like WHERE, except that it removes rows only from the input of the particular ag-
gregate function that it is attached to. Here, the count aggregate counts only rows witht enp_| o
below 45; but the max aggregateis till applied to al rows, so it still finds the reading of 46.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command. Suppose you are ho longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e

San Francisco | 46 | 50 | 0.25 | 1994-11-27

15

The SQL Language

San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

16

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (
city varchar (80) references cities(nane),
tenmp_lo int,

17

Advanced Features

t enmp_hi int,
prcp real,
dat e date

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in thistutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either al these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported compl ete.

18

Advanced Features

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility asthey happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COVMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
asavepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using save-
points like this:

BEG N,

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

19

Advanced Features

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnane) FROM enpsal ary;

depnane | enmpno | salary | avg
----------- T
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the tableenpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

You can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

20

Advanced Features

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enmpno | salary | rank
----------- T e Y
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2 | 3900 | 1
personnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clausesif any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. 'Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ .
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Advanced Features

Above, sincethereisno ORDER BY inthe OVER clause, the window frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e oo -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Herethe sumistaken from thefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden el sewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and
the SELECT reference page.

22

Advanced Features

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables. A tableci ti es and atable capi t al s. Naturaly, capitals are aso cities,

S0 you want some way to show the capitals implicitly when you list all cities. If you're really clever
you might invent some scheme like this:

CREATE TABLE capitals (

name t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, elevation FROM non_capitals;

Thisworks OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis;

CREATE TABLE cities (

nane t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERITS (cities);

Inthiscase, arow of capi t al s inheritsall columns(nane, popul ati on,andel evat i on)from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its
state abbreviation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located

at an elevation over 500 feet:

SELECT nane, el evation
FROM citi es
VWHERE el evati on > 500;

which returns;

23

Advanced Features

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated

at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tablesbelow ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to

more resources.

2 https://www.postgresgl.org

24

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 33
A1, LeXiCal SIUCTUME ...ttt ettt e e 33
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 33
.02, CONSLANESeeree ettt ettt 35
40,3, OPEIELOISeieeeeei ettt ettt et 40
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 40
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 41
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 41

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 42
4.2.1. ColUMN REFEIEINCEScovviieiiii e 43
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 43
4.2.3. SUDSCIIPES ettt ettt e 43
424, Field SEIECHON ...t 44
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 44
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 45
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 45
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 47
4.2.9. TYPR CaASLS ..cvtiiiieeet et 50
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 51
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 52
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 52
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 53
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 55

4.3, CalliNg FUNCLIONS ...ttt e e e 56
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 57
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 57
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 58

5. Dat@ DEFINITION ..ottt et e aaas 59
5.1 TADIE BASICS ..ttt ettt 59
5.2, DEFAUIT VAIUBS ...t 60
5.3. Generated COIUMNScoouiiieiiii e e 61
B4, CONSITAINTS ..ttt ettt ettt e e e et e e e et e e e et e e e e ena s 62
5.4.1. Check CONSITAINTScevuieeiiiiieeeeii ettt ettt e et eeeere e eees 62
5.4.2. NO-NUII CONSIFAINES ...cceveiieieii et 65
5.4.3. UNIQUE CONSITAINESevviieiiiiie ettt 66
544, PrIMAY KEYS ...ttt 67
545, FOrEigN KEYS ...t 68
5.4.6. EXCIUSION CONSITAINTScevviiiiiiiee ettt ettt e e e 71

5.5, SYStEM COIUMNS ...t ettt e e et e e et e eeees 71
5.6. MOAIfTYiNG TaDIES ...t e 72
5.6.1. AddiNg @ COIUMNoouuiiiiiii e 73
5.6.2. ReEMOVING @ COIUMNoouiiiiiii et 73
5.6.3. AddiNG @ CONSIFAINTccevviiiiiiiie e 73
5.6.4. ReMOVING @ CONSIIAINTccvvviieiiiiie ettt 74
5.6.5. Changing a Column's Default Valueccoouviiieiiiiiiiciiii e 74
5.6.6. Changing a Column'S Data TYPEc.uuuieiiiiiieiiiie e 74
5.6.7. Renaming & COIUMINcoouuiiiiiiii e 75
5.6.8. ReNaMiNg @ TaDI€coovuiiiiiiii e 75

BT PrIVIIEOES ..o e 75
5.8. ROW SeCurity POIICIESuiiiiii e 80
5.9, SCREMAS ... 86
5.9.1. Creating & SCNEMAceuuiiiiiiii e 86
5.9.2. The PUBIIC SChemMacoooiiiiii e 87
5.9.3. The Schema Search Pathoooooiiiiiiiii e 87
5.9.4. Schemas and PrivilEgESooiiiiiiiiii e 89

26

The SQL Language

5.9.5. The System Catalog SChEMAcccviiiiiiiiiii e 89
5.9.6. USAQE PaleINSviiiiiii e 89
5.9.7. POMabIITY ..vvueiiiiii i 90
5.10. INNEITANCE ... eeeiiii e e e e et e e et e e et e e e e e e aae 90
T L0 T O Y= (PP 93

5.11. Table Partitioningceeuuiiiiieiii e e e e e e 94
D111 OVEIVIEIW oottt ettt e e e et e e e et e e e e et s e e e eebe e e e aeatanaeeees 94
5.11.2. Declarative Partitioningcccouuiiiiiiiiiiiciiie e 95
5.11.3. Partitioning Using INNEritanCec.coeeviiiiiiiiiiec e 100
5.11.4. Partition Pruningooiuuiiiii e e e e e e e e e e e et e e e e e e een 104
5.11.5. Partitioning and Constraint EXCIUSIONooevviiiiiiiieiiecceec e 106
5.11.6. Best Practices for Declarative Partitioningc.ccooeevvieeiiiciiinecinneen, 107

I o (= o | B T - L 108
5.13. Other Database OBJECISu.iviniciii i e 108
5.14. Dependency TraCKingc..ciuuieiiieeiiee i e e e e e e e e e e e et e e e e e e e et e e eaneen 108
6. Data ManipUIAioNoiiiiiiiii e e e e e e e e e e e e e e e e e e ee 111
L 1S g To [D - - Y 111
S UL o = (] o I T - L 112
SRCR D= I (] oo - - P 113
6.4. Returning Data from Modified ROWSccoviiiiiiiiiicie e 113
2O 0 = 1= N 115
7.0 OVEIVIBIW ..ottt ettt e ettt e e e et n e e e et e e e e et n e e e aa e e eaaan s 115
7.2. TahIE EXPIrESSIONSivviiiiie e e e e e e e e e e e e e e e e et e e e e e e aens 115
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 116
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 124
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvviieeiiiieeeeiiie e ee et e e 125
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 128
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 131

SRS = < ox B I £ PR 131
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 131
7.3.2. COlUMN LADEIS ..oeviieiiii et 132
7.3.3. DESTINCT it e e e et eeeaanns 132

7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)cooviviiieeiiiiineeveiiieeeeeiinnnn 133
7.5. Sorting ROWS (ORDER BY) ...iiiiiiiiii i e e e e e e 134
T76. LIM T @nNd OFFSET ..ovniiiiiiiiieii et e e e eeeaa e eees 135
TV A/ O S R I £ PSP 135
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 136
7.8.1L SELECT INW TH .ot 137
7.8.2. RECUISIVE QUENIES ...uuiiiiciii et et e e e e e e e e e e e e eeen 137
7.8.3. Common Table Expression Materiaizationccooeeeveiiiniiiiniiiieennnnn, 142
7.8.4. Data-Modifying Statements in W THcoooiiiiiii i, 143

S T D= = T Y/ 0 P 146
300 O N0 0= o Y o= 147
e I 1 011 o = g Y/ o1 PRSP 148
8.1.2. Arbitrary Precision NUMbBErSc.ooiiiiiiiiii e 148
8.1.3. Floating-POINt TYPES ..cvvuiiiii i e 150

8. LA SEIA TYPES ettt 152

e I o g1 = 1Y o< T PPN 153
G I O == ot (= G Y/ o= P 153
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 156
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 156
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 156

R = (=l T2 1T Y/ o= P 158
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 159
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 163
8.5.3. TIME ZONES ... ittt e e e e e e aaens 164
8.5.4. Interval INPULcovtiiii e e 165
8.5.5. INTEIVAl OULPULuveiiiiiieeeii e et e e e 167

27

The SQL Language

S = ToTo = Y/ o= P 167
A 1000 = =0 B Y/ o= 168
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiiieii e 168
A @ (o[41 o PN 169
B.7.3. TYPE SAFELY eeeveieeieii ettt 169
8.7.4. Implementation DELalSveiiiiiiii e 170
R CTc o0 0= (o Y o1 170
B.8.L. POINES ...ttt 171
882, LINES ittt 171
8.8.3. LiNE SEgMENLSceviiiiii i e 171
8.8, BOXES ...ttt ettt ettt 171
B.8.5. PalNS ...t 172
8.8.6. POIYQONS .. .oviiii e 172
B.8.7. CICIES ittt 172
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiieei et e e e e e e e e e e e e e e e eaans 173
S I R T 1= PP 173
S o3 i | PP 173
8.9.3. 1 NEL VS Cl Al et 174
S I 1= U= o o | PP PP 174
8.9.5. MACAUAN 8 .ouiiiiiiii i 174
8.10. Bit SIHNG TYPES . iittiiii et e e e e e e e et e e et e e e ean s 175
8.11. TeXt SEArCh TYPES evniii i 176
00 O A= VT o3 A o TP 176
S I 2 A=Y o [6T 177
ST 2 U1 1 T Y/ o U PTRSPN 179
ST Q1 I 1Y/ o= PP 179
8.13.1. Creating XML ValUESoiiiiiieiiiii e 179
8.13.2. Encoding Handlingcevuiiiiiiiiiii e 180
8.13.3. AcCeSSING XML ValUESciveiiiiieie e 181
ST N S O NI Y/ o=~ 181
8.14.1. JSON Input and OULPUE SYNEAXeeveeiiiieiiii e e e e 183
8.14.2. Designing JSON DOCUMENTScvvueeineiiiieiiee e e eeine e e et ee e e eaaneeaens 184
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 184
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 186
8.14.5. | SOND SUDSCIIPLING ..vuviieeii e e e e e aens 188
8.14.6. TraNSfOMIS .. ettt e 190
8.14.7. JSONPAEN TYPE . eveicii e 190
8L, AT A S ettt ittt 191
8.15.1. Declaration Of Array TYPES ...ceuuiiiiiieiiiieeie e e e e e e e e e e e 192
8.15.2. Array ValUB INPULcovviiii e 192
8.15.3. ACCESSING ATTAYS .vueivneiiieeeiiee et e et e e et e e e e e st e e e e e e et e e st e eeanaeeaes 194
8.15.4. MOAITYING ATTAYS ...uieiieii et e e e e e e e e e aaeees 196
8.15.5. SEarChING IN ATTAYS «.ouuiiiii e e e e e eens 199
8.15.6. Array Input and OULPUL SYNEAXcevvneeeinieiiieeeiiieciieee e e e eaaeeeens 200
8.16. COMPOSITE TYPES .vvueeineiiiietitie et e e et e e et e ettt e et e e et e e et e e st e et eeateesaneeetnees 201
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvuiiiieiii e e e e e e e e 201
8.16.2. Constructing Composite ValUEScceuviiviiiieiiieiiiiieeie e 202
8.16.3. AccesSiNg COMPOSIEE TYPES ...vvvuiiiiieiiieeiie e e e e e e et e e e e e eanas 203
8.16.4. Modifying COmMPOSItE TYPEScvvvieiiiieiiiieeeiee e e e e e e e 203
8.16.5. Using Composite TYPeS iN QUENEScouuuveiineeiiiieeiii e e e e e e e 204
8.16.6. Composite Type Input and Output SYNtaXxcceevvvveeinieiiieeiiieeiieennn. 206
8.7, RANGE TYPES .ottt 207
8.17.1. Built-in Range and MUItirange TYPES «....uvvvreiiiieriiieeeie e e e eaenns 208
8.17.2. EXAMPIES ...t 208
8.17.3. Inclusive and EXCIUSIVE BOUNGSvveiiiiiiieiiiiineeciiie e 208
8.17.4. Infinite (Unbounded) RaNGESocivviiiiiiiiiii e 209
8.17.5. Range INPUL/OULPULcovuiiieeii e e e e e e e e e e 209
8.17.6. Constructing Ranges and MUILirangesSccoevviveiiiiieiiiecci e, 210

28

The SQL Language

8.17.7. DISCrete RANGE TYPES .. vvvneiii i et et e e e e e e e e et e e e eaaas 211
8.17.8. Defining New RaNGE TYPEScvvviiiii et e e e 211
8.17.9. INAEXING ...vuiii i 212
8.17.10. COonStraintS 0N RANGESu.ivvueiiieiiieeiee e e e e e e e e e eaaeee 212

TR0 T I T4 F= T T Y 0 1= 213
8.19. ObjeCt 1AENtifIEr TYPES c.vuiiii e e e eaaas 214
<320 o To TN =Y 2 N 1Y/ o= 216
ST T e =0 (o 0l 1N o1 217
LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 219
1o I oo Tor= I @ o= = (o) £ S 219
9.2. Comparison FUNCtions and OPEratorSeeevueeeiieiiieeeiieeeeiie e e e e e e e eeaneeaes 220
9.3. Mathematical Functions and OPEratorSevvuiieiiiieeiii e e e e 224
9.4. String FUNCLioNS and OPEIAtOrSu.cvuuieiiiieeiiieeii e e e e e e e e e e et e eaneens 231
LS T o T 112 PP PTRPPPRN 239

9.5. Binary String FUnctions and OPEratorsSccuuveiuuieiiineeiiieieiieeeiieeeieeraineesanens 241
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeii e e e e e e e e e e 245
A = (= 1 T\ (11 o P 247
S O I PP 248
9.7.2. SIM LAR TORegular EXPreSSIONScvvvuieiiieeeiiieeiiieeeiieesineesineesaneens 249
9.7.3. POSIX ReguIar EXPreSSIONSuuiiiueiiiieiiiieeiieeeinesieeeiaeeaineesaneesens 250

9.8. Data Type Formatting FUNCLIONSccovuiiiii i e e e 266
9.9. Date/Time FUNCtions and OPEratorSuveiuuieiiiieiiiiee e e ee e e e e eaeens 274
9.9.1. EXTRACT, dat € _Part ..oiciiiiiiiiieiii e e e aens 281
0.9.2. dAt € LT UNC .iiiieiii e e e 286
0.9.3. dat @ DI N oo 286
9.9.4. AT TIME ZONE ...ttt ettt 287
9.9.5. CUITENt DA/ TIME ...evvnieiiiii e e et e eana e 288
9.9.6. Delaying EXECULIONiivuieiiie e e e e e e e e e e e e e eees 289

9.10. ENUM SUPPOIt FUNCLIONScvticiiieci e e e e e e e e e e e aans 290
9.11. Geometric FUNCtioNS and OPEratOrSevvuneiiiieiieeeiiee e e e e e eee e eaneeaens 291
9.12. Network Address Functions and OPEratorsScc.uveevuieiviieeiiieeeiieeeeeeaieeaenns 298
9.13. Text Search FUNCioNS anNd OPEratOrSueevvnieiiiieiiiieeie e eeeee e e e e e e 301
9.14. UUID FUNCLIONSieeitiiieeeiii e ettt e et s e e et e e e e aan e e e et e 307
9.15. XML FUNCLIONS ... eiiiiiieee et e e et e e et s e e et e e e e et 308
9.15.1. Producing XML CONENLcccuuiiiiieiieeiii e e e e e e e e e e e eaen 308
9.15.2. XML PrediCatesuuieiiiiieeeii et e et e e e e e 312
9.15.3. ProCesSiNg XML ...uuuiiiiiiiiiiiii et 314
9.15.4. Mapping TableSto XMLcvvniiiiiicii e 319

9.16. JSON FUNCLiONS aNd OPEraIOrScvvvneiiieeeieeeieeeieeeaee et e e e e et ee e et e e e eeens 322
9.16.1. Processing and Creating JSON Dafacc.vevevneiiiiieiiiieeiieeeneeeiee e 323
9.16.2. The SQL/JSON Path Languagec.uuveeiiiinieeiiiiiieeeeiineeeeiine e e 334

9.17. Sequence Manipulation FUNCHIONSooviiiiiiiiicii e 342
9.18. Conditional EXPrESSIONSuuiiiuiieiiieiii e e e e e e e e e e e e e e e e e aens 343
O.18. 1. CASE ...ttt 344
9.18.2. COALESCEciiitiiieeiii ettt ettt e e e et e et e e aeaen s 345

0 ST U I P 345
9.18.4. GREATEST and LEASTiiiiiiiiieiii ettt e e e 346

9.19. Array FUNCtioNS and OPEIralOrSccuuieiiuieiiieiiii e e e e e e e e e e e e eaanes 346
9.20. Range/Multirange Functions and OPEratorsSc..uvevvuieiiineeiieesiieeeieeeaieeeaenns 350
9.21. AQQregate FUNCLIONScoun i e e e e e e e eaes 356
9.22. WINAOW FUNCHIONSvuieiiiiii e ettt e et e e e et e e e eai e eeees 363
9.23. SUDQUENY EXPrESSIONS ...euueiiiiiiiiieeiieeet e e e e e e e e e et e s e e et e e et e e st e e e eeannas 365
0.23. L. EXI ST ittt 365
0,232, I N ettt 365
9.23.3. NOT | N Lot e e e 366
9.23.4. ANY/SOMEouiiiiiiiii ettt ettt ettt e et e e et e et e e e e e e eaean 366
0,235, ALL ottt 367
9.23.6. SINGIE-ROW COMPAITSONcovvieiiiieeii e e e e e e e e e e e e eees 367

29

The SQL Language

9.24. Row and Array COMPAISONScvuuieiiieriteeeiiieeeiieeeie e st re st e e e eetreeanaeeennns 367
.24, 1. I N 1ot 368
9.24.2. NOT | N Lottt e e e 368
9.24.3. ANY/SONE (BITAY) +oeevvvneteetinieteeiiieeeetn e e et e e et s e e eain e e e erin e e era s 368
9.24.4. ALL (BITAY) +evvtnieeeiiiiee et e e ettt s e e ettt e et s e e et e e e et a e e e et e e e e eaaaaaae 369
9.24.5. Row Constructor COMPAariSONeeeuueeriiieriiieriiieeeieerieesieeeaneesnnnns 369
9.24.6. Composite Type COMPAiSONcevuneiiiieeiieeeieeeiie e e e e e eaneeaeans 370

9.25. Set REtUrNING FUNCHIONSo.viiiieci e e e e e e eens 370

9.26. System Information Functions and OPEratorsScc.uvevvveiiinieiiieeeiiieriineeaneens 374
9.26.1. Session INformation FUNCLIONSvveeiiiiiieiiiiie e 374
9.26.2. Access Privilege Inquiry FUNCLIONSccoiiiiiiieiiiiccie e 377
9.26.3. Schema Visibility Inquiry FUNCLIONScoooviiiiiiiiiii e 380
9.26.4. System Catalog Information FUNCLIONSccccovviiiiieiinccieec e, 381
9.26.5. Object Information and Addressing FUNCLIONScooevvieiiiiiiiiieeiinnnns 387
9.26.6. Comment Information FUNCLIONSooovviiiiiiiiiiiieecci e 388
9.26.7. Data Validity Checking FUNCLIONSoveiviieiiiieiii e 388
9.26.8. Transaction ID and Snapshot Information Functionscccoeeeevnn. 389
9.26.9. Committed Transaction Information FUNCLIONSccovveiiiiiiieiiiiieees 391
9.26.10. Control Data FUNCHIONSiiiiiiiciiiii e 392

9.27. System Administration FUNCHIONSccuuiiiiiiiiiiie e e 393
9.27.1. Configuration SettingS FUNCLIONSccuiviiiieiii e, 393
9.27.2. Server SIgnaling FUNCLIONSoivuiieiiicce e 394
9.27.3. Backup Control FUNCHIONSiiiiieiiicci e e 396
9.27.4. Recovery Control FUNCLIONSocvvviiiieiii e 398
9.27.5. Snapshot Synchronization FUNCLIONScveviiieiiiieiieece e 400
9.27.6. Replication Management FUNCLIONScccviiviiiiiiiii e 400
9.27.7. Database Object Management FUNCIONScc.oeevvieviineeii e, 403
9.27.8. Index Mantenance FUNCLIONSoveiiuiiiieieiine e eeii e eeeenns 406
9.27.9. Generic File ACCESS FUNCHIONSuiiiiiiciiii e 406
9.27.10. Advisory LOCK FUNCLIONSccvuiiiieeii e e e 409

9.28. Trigger FUNCLIONSuuiii i e e e e e e e e et e e et e et e e e e e eanas 410

9.29. Event Trigger FUNCLIONScouuiiiii e e e e e e eaa e 411
9.29.1. Capturing Changes at Command Endccocooiiiiiiiiiiiiiiiecieeeees 411
9.29.2. Processing Objects Dropped by a DDL Commandccocevvvviiinnennnnnns 412
9.29.3. Handling a Table ReWrite EVENtccoveiiieiiii e, 413

9.30. Statistics INfOrmMation FUNCLIONSviieiiiiieiii e e 414
9.30.1. INSPECEiNg MCV LiStS ..uuiiviiiiiicii i e e 414

O Y oL @0 5177 = T o P 416

O @ = 4T Y PP 416

B0.2, O OIS ittt ettt ettt 417

L0 R ¢ o] L PRSP 421

O R NI (o] = o = 425

10.5. UNI ON, CASE, and Related CONSITUCESuuieviiiiieiiiiiieeceii e ee e 426

10.6. SELECT OUPUL COIUMNSuueeiiiieee et e et e et e e e et eeeetn e e e eeaenaeeees 427

T o (== PSP 429

0 O oo (0 1o USRS 429

2 1 o L= G Y/ o === P 430
O I = = PP 430
L1.2.2. HASN oo 431
2 TR €11 PSPPI 431
S 1 PP 431
L1125, GIN i e 431
2 T =1 PSPPSR 432

11.3. MUItICOIUMN INAEXESeeevviee ettt e e e e eaeen 432

11.4. Indexes and ORDER BY ...cicuuiiiiiiiiiiiiiiii e e et e e 433

11.5. Combining MUItiple INAEXESciiiiiiii e 434

12.6. UNIQUE INAEXESuieieeii et e e e e e e e e e e e e eaens 435

11.7. INAEXES ON EXPrESSIONSuiiiiieiii e e e e e e e e e e e e e e et e e et e e e e e e aens 435

30

The SQL Language

11.8. Partial INOEXES .. .cevvvnieeiiii et e et e e e e aaens 436
11.9. Index-Only Scans and Covering INAEXEScc.uvviiiiiiiiieiii e 439
11.10. Operator Classes and Operator FamilieScooevvieiiiiiiiiii e, 441
11.11. Indexes and COll@tioNSuieiiiiiiee e 443
11.12. EXxamining INAeX USAQgEuuiviunieiiiieiii et e e e e e e e e e e e aaas 443
B B I G S =T oo 445
25 O 1 oo (0 o TSP 445
12.1.1. What 1S @ DOCUMENE? ..euueiiiii ettt e e e 446
12.1.2. Basic Text MatChingoovviiiiiiii e 446
12.1.3. CONfIQUIBLIONS .. .ouuiiiiieiie e e e e e e e e e e e e e e e e e e eaens 448

12.2. TAhleS @A INOEXES .. .cevveieeeiii et e s 449
12.2.1. Searching @ Table ...couvniii e 449
12.2.2. Creating INAEXES ... cvveeiii et e e e e e e e aes 450

12.3. Controlling TeXt SEarChccooviiii i 451
12.3.1. ParSiNg DOCUMENESuviiiieiie e e e e e e e e e e e e e e eens 451
12.3.2. ParSiNG QUETTES .. .cvuiiiiiciee et e e e e e e e e e e e e e 452
12.3.3. Ranking Search RESUILSiiviiiiiice e 455
12.3.4. Highlighting RESUILSccvviiiiiiei e e 457

12,4, AddItioNal FEAIUMESvuuiieii e e e 458
12.4.1. Manipulating DOCUMENESuiiiiiieiiecii i ee e e e e e e e e e 458
12.4.2. Manipulating QUENIESceuueiiiieei e e e e e e e 459
12.4.3. Triggers for Automatic Updatesceevnieiiieiiiieiiii e e 462
12.4.4. Gathering DocUmMENt StaliStiCS . .vvuvivnieii i eeee e e 463

T T = U SPPPRRN 464
N T B T Lo g = = PP 466
12.6.1. SIOP WOIAS .. ccvnciiieii e e e e e e e e et e e e e e aanaees 467
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieei e e e e e e e e eanees 467
12.6.3. SYNONYM DICLIONANYuuiiiiieeiiieiiie e ee e e e e e e e e e eanas 469
12.6.4. TheSaUrus DiCtONANYcccuuiiiiiiiiiii e e e e e 470
12.6.5. ISPEI DICHONAIY ...cvvniiiiieiiie e e e e e 473
12.6.6. SNOWDaEll DICHIONAIYcvveiiiicei e e e 475

12.7. Configuration EXAMPIEccuuiiiiiiiie e 475
12.8. Testing and Debugging Text Searchccocovviiiiiiii e, a77
12.8.1. Configuration TESLNGcvvueiiiieeiii e e e e e e e e e eanas a77
12.8.2. ParSer TESHNG «.ovvvvvvveineieeeeeteieiiias s e e e eeeeesttis s e s e e e eeaaaatn s e e eeeeeeannennnns 479
RS TC T B Tox i [0) 4 = VA = (Vo [P 480

12.9. Preferred Index Types for Text SEarchc.oovvvviieiiii e, 481
2250 O T o1 o [T o] oo o 482
2 T T 1 = o) PP 485
13. ConCUrENCY CONLION ...uuiii it e e e e e e e e et e et e et e e st e e e e eaaeeeen 487
30 O 1 oo (0 1o TSP 487
13.2. Transaction I1SOIAONcceuuieiiii e eee 487
13.2.1. Read Committed ISOlation LEVEluovviiiiiiiiiiiieece e 488
13.2.2. Repeatable Read 1s0lation LEVElccovviiiiiiiiiiiieeeeee e, 490
13.2.3. Serializable [S0lation LEVE!ooveviiiiiiiiii e 491

I CTC I (o[T I o Vo PN 493
13.3.1. TaADIE-LEVE LOCKS ..oevvuiieeii ettt 493
13.3.2. ROW-LEVE LOCKS ..iivtieiiiiii ettt 496
13.3.3. Page-Level LOCKSciiiiiii e e 497
13.3.4. DEAAIOCKS ...uuieeeeiieeii ettt e e e e e e e e e e e e e e e e e e anaaa 497
13.3.5. AQVISONY LOCKS ...uuiiiiiiii e e e e e e e e e e e eens 498

13.4. Data Consistency Checks at the Application Levelc.cocoveiiiiiiiniineceeen, 499
13.4.1. Enforcing Consistency with Serializable Transactionscccccevvveeee. 499
13.4.2. Enforcing Consistency with Explicit Blocking LOckScccocvvvivinnnnenn, 500

13.5. Seridization Failure Handlingccoiiiiiiiiiiieiie e 500
ST 0 Y= P 501
13.7. LocKing and INAEXEScven i e e e e e 501
I (o0 7= 10T T = 503

31

The SQL Language

14.2. USING EXPLAIL N Looiiiiiiiiii ettt e e e e e e e e e et e s e e e e aeeannnes 503
I T (o Y Y I AV 27 T o 503
14.2.2. EXPLAI N ANALYZEoovviiiiiiieee e e e e e 509
R T O = £ 514

14.2. Statistics Used by the Planner ..., 515
14.2.1. SINgle-Column StaiStiCS . .cvuueiiiiiii e 515
A A = 00 (= S - S (oI 517

14.3. Controlling the Planner with Explicit JO N ClaUSEScccvvevivieiiiieeiiiicceeeiiees 520

14.4. Populating @ Databaseoevvuieiiieiie e 522
14.4.1. Disable AULOCOMIMILvuuiiiiii e et e e e eannns 522
14.4.2. USE COPY oitiiiiiieeiieeett et e e e ettt st e e e e e e e et s s e e e e e e e aa e s e e eaaeeeennes 522
14.4.3. REMOVE INAEXES ...cevvvieeeiii ettt e et 523
14.4.4. Remove Foreign Key CONSITaiNtScccvuveiinieeiiieiiiieeiieeineeeieeeaneeeens 523
14.4.5. Increase mai Nt enance_WOr K _IMBM.......cociieiiiieiiiin e, 523
14.4.6. Increase MBX_Wal _Si Z€ ..oiiiiiiiii i 523
14.4.7. Disable WAL Archival and Streaming Replicationcccoccovveinnn. 523
14.4.8. RuN ANALYZE AFtErWardScovvvuvuiiiiieeeeeeiiiiies s e e e e e eeesiiin s e e eeeeaanns 524
14.4.9. Some Notes about Pg_ AUMPvuiiiniiieei e e e e 524

14.5. NON-DUrable SEtlNGSvuveeiiiiie e e e e e e e e e e aan s 525

ST = = O TN oSSR 526

15.1. How Parallel QUENY WOTKSoiiiiiiii i 526

15.2. When Can Parallel Query Be USed?covvviiiiiiieiiiiiiiiei e e e 527

15.3. Parallel PLanScocoueiiiii e 528
15.3.1. Parallel SCaNSccvvviiiiieeeeei et e e 528
15.3.2. Parallel JOINScvvviiiieieeiiieiiis et 528
15.3.3. Parallel AQQregationocvuuiiiiiiiii e 529
15.3.4. Parallel APPENdccovniiiiiiie e 529
15.3.5. Parallel Plan TIPS ..uccuuiiiiiieiii e e e 529

15.4. Parallel SafElYoiieeiieeeiiiie e e 530
15.4.1. Parallel Labeling for Functions and Aggregatesoocvvvevvveveiiieeinennnnn. 530

32

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above exam-
ple we would usualy speak of a“SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of | NSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsarenot allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

33

SQL Syntax

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case-insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never akey word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
aparse error when used where a table or column name is expected. The example can be written with
quoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting anidentifier al so makesit case-sensitive, whereas unquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and" f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator & Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or aternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

SQL Syntax

4.1.2.

U&'d! 0061t ! +000061" UESCAPE '!'

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literaly, writeit twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to com-
pose characters with code points larger than U+FFFF, although the availability of the 6-digit form
technically makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a
single code point.)

If the server encoding isnot UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can & so be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (*), for
example' This is a string'.Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g., ' Di anne' ' s hor se' . Note that thisis not the same as a
double-quote character (").

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0’

"bar';

is equivalent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This dlightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape’ string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E' f 00" . (When continuing an escape string constant across lines, write E only
before the first opening quote.) Within an escape string, a backslash character (\) begins a C-like
backslash escape sequence, in which the combination of backslash and following character(s) repre-
sent a special byte value, as shown in Table 4.1.

35

SQL Syntax

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nter pretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ 't tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A—F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x = 0-9, A-F) 16 or 32-bit hexadecimal Unicode character val-
ue

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or hexa-
decimal escapes, compose valid characters in the server character set encoding. A useful aternative
isto use Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then
the server will check that the character conversion is possible.

Caution

If the configuration parameter standard_conforming_stringsis of f , then PostgreSQL recog-
nizes backslash escapes in both regular and escape string constants. However, as of Post-
greSQL 9.1, the default is on, meaning that backslash escapes are recognized only in es-
cape string constants. This behavior ismore standards-compliant, but might break applications
which rely on the historical behavior, where backslash escapes were always recognized. As
aworkaround, you can set this parameter to of f , but it is better to migrate away from using
backslash escapes. If you need to use a backslash escape to represent a special character, write
the string constant with an E.

In addition to st andard_conf orm ng_strings, the configuration parameters es-
cape_string_warning and backslash_quote govern treatment of backslashesin string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string ' dat a' could be written as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

36

SQL Syntax

U& \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character.

To include the escape character in the string literally, writeit twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to com-
pose characters with code points larger than U+FFFF, although the availability of the 6-digit form
technically makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a
single code point.)

If the server encoding isnot UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisis because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes, since each of those must be doubled.
To allow more readable queries in such situations, PostgreSQL provides another way, called “dollar
quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($), an
optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, adollar sign, the same tag that began this dollar quote, and adollar sign.
For example, here are two different ways to specify the string “ Dianne's horse” using dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, itisjust some more char-
acters within the constant so far as the outer string is concerned.

37

SQL Syntax

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tagsare case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written asfour
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B' 1001" . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of hit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where di gi t s is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if
one is present. There cannot be any spaces or other characters embedded in the constant, except for
underscores, which can be used for visual grouping as described below. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

Additionally, non-decimal integer constants are accepted in these forms:
Oxhexdigits

Oooctdigits
Obbindigits

38

SQL Syntax

where hexdi gi t s isone or more hexadecimal digits (0-9, A-F), oct di gi t s isone or more octal
digits (0-7), and bi ndi gi t s isone or more binary digits (0 or 1). Hexadecimal digits and the radix
prefixes can bein upper or lower case. Note that only integers can have non-decimal forms, not num-
bers with fractional parts.

These are some examples of valid non-decimal integer constants:

0b100101
0B10011001
00273
00755
Ox42f
OXFFFF

For visua grouping, underscores can be inserted between digits. These have no further effect on the
value of the constant. For example:

1_500_000_000
0b10001000_00000000
0o_1 755
OXFFFF_FFFF

1.618 034

Underscores are not allowed at the start or end of a numeric constant or a group of digits (that is,
immediately before or after the decimal point or the exponent marker), and more than one underscore
inarow is not allowed.

A numeric constant that contains neither a decimal point nor an exponent isinitially presumed to be
typei nt eger ifitsvaluefitsintypei nt eger (32hits); otherwiseit ispresumedto betypebi gi nt
if itsvalue fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i ¢. Constants that
contain decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force anumeric valueto be interpreted as a specific data
type by casting it. For example, you can force anumeric value to be treated astyper eal (f | oat 4)

by writing:
REAL '1.23" -- string style
1.23:: REAL -- PostgreSQL (historical) style

These are actually just specia cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

"string' ::type

CAST ('string' AS type)

The string constant'stext is passed to the input conversion routine for thetypecalledt ype. Theresult
isaconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto

the type the constant must be (for example, when it is assigned directly to atable column), in which
caseit isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

39

SQL Syntax

4.1.3.

4.1.4.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not al type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST(), and function-call syntaxes can also be used to specify run-time type conver-
sions of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types; use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax isa generalization of the
standard: SQL specifiesthis syntax only for afew data types, but PostgreSQL allowsit for al types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the fol-
lowing list:

+-F<>=~1 @#B & | ?

There are afew restrictions on operator names, however:

* -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#%"& | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some charactersthat are not al phanumeric have aspecial meaning that is different from being an oper-
ator. Details on the usage can be found at thelocation where the respective syntax element isdescribed.
This section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign can be part of an iden-
tifier or adollar-quoted string constant.

» Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

e Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

40

SQL Syntax

4.1.5.

4.1.6.

e The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

e Thecolon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

e Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, e.g.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment beginswith / * and extends to the matching occurrence of */ . These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have
the same precedence and arel eft-associative. The precedence and associativity of the operatorsishard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rulesimply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast
[1] left array element selection
+ - right unary plus, unary minus
COLLATE left collation selection
AT left AT TI ME ZONE
A left exponentiation
* [% | eft multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left al other native and user-defined oper-
ators

41

SQL Syntax

Operator/Element Associativity Description

BETVWEENI NLI KE I LI KE range containment, set membership,

SIM LAR string matching

<>z=<=>=<> comparison operators

I ST SNULL NOTNULL IS TRUE, I S FALSE, IS NULL,
I'S DI STI NCT FROM etc.

NOT right logical negation

AND left logical conjunction

R | eft logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea” +” operator for some custom
datatypeit will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dlightly different operator precedence rules. In particu-
lar, <= >= and <> used to be treated as generic operators; | S tests used to have higher pri-
ority; and NOT BETWEEN and related constructs acted inconsistently, being taken in some
cases as having the precedence of NOT rather than BETWEEN. These rules were changed for
better compliance with the SQL standard and to reduce confusion from inconsistent treatment
of logically equivalent constructs. In most cases, these changes will result in no behavioral
change, or perhapsin “no such operator” failureswhich can beresolved by adding parentheses.
However there are corner cases in which a query might change behavior without any parsing
error being reported.

4.2. Value Expressions

Vaueexpressionsare used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin| NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of atable
expression (which is atable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal cul ation of values from primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
» A constant or literal value
* A column reference

» A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression

A field selection expression

42

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

» An operator invocation

* A function call

* An aggregate expression

» A window function call

* A typecast

* A collation expression

A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of afunction or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col utTmnane

correl at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceis used to indicate avaluethat is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. Some client libraries
al so support specifying data values separately from the SQL command string, in which case parame-
ters are used to refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

43

SQL Syntax

4.2.4.

4.2.5.

expr essi on[subscri pt]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

(Here, thebrackets[] aremeant to appear literally.) Eachsubscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol uml[4]

nyt abl e. two_d_col uim[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dnane

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nmyt abl e. mycol um
$1. somecol um
(rowfunction(a,b)).col 3

(Thus, a quaified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(conposi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

You can ask for al fields of acomposite value by writing . *:

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are two possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)

44

SQL Syntax

4.2.6.

4.2.7.

oper at or expr essi on (unary prefix operator)

wheretheoper at or token followsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schenma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functiona style. That is, the
notations col (t abl e) andt abl e. col are interchangeable. This behavior is not SQL-
standard but is provided in PostgreSQL because it allows use of functions to emulate “ com-
puted fields”. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of theinputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter _clause)]
aggregate nane ([expression [, ... 1]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or

45

SQL Syntax

a window function call. The optional order _by cl ause andfilter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generally only useful for the count (*) aggregate function. The last formis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, m n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressionsare alwaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a Post-
greSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when
ordering the input rows for general-purpose and statistical aggregates, for which ordering is op-
tional. There is a subclass of aggregate functions called ordered-set aggregates for which an or -
der by cl ause isrequired, usually because the aggregate's computation isonly sensible in terms
of a specific ordering of its input rows. Typical examples of ordered-set aggregates include rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside

46

SQL Syntax

4.2.8.

WTH N GROUP (...), asshown in thefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted
aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are called direct arguments to distinguish them from the aggregated argumentslisted in the or -
der by cl ause. Unlike regular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in this case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of thei nconme columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentile fraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and f i | t er _cl ause if any) contain only outer-level variables: the aggregate then be-
longs to the nearest such outer level, and is evaluated over the rows of that query. The aggregate ex-
pression asawholeisthen an outer reference for the subquery it appearsin, and acts as a constant over
any one evaluation of that subquery. The restriction about appearing only in the result list or HAVI NG
clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the

47

SQL Syntax

selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_name
function_name ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (w ndow definition)
function_name (*) [FILTER (WHERE filter_clause)]
OVER wi ndow_nane
function_name (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni t i on hasthe syntax

[existing_w ndow _nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST}] [, ...]11

[frane_cl ause]

The optional f r amre_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wherefranme_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

and f r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_narne isareferenceto anamed window specification defined in the query's W NDOWtl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window in the W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnare is not exactly equivalent to OVER (wnane . . .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed sepa-
rately by the window function. PARTI TI ON BY works similarly to aquery-level GROUP BY clause,

48

SQL Syntax

except that its expressions are always just expressions and cannot be output-column names or num-
bers. Without PARTI TI ON BY, al rows produced by the query are treated as a single partition. The
ORDER BY clause determines the order in which the rows of a partition are processed by the window
function. It workssimilarly to aquery-level ORDER BY clause, but likewise cannot use output-column
names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The f r ame_cl ause specifies the set of rows constituting the window frame, which is a subset of
the current partition, for those window functions that act on the frame instead of the whole partition.
The set of rows in the frame can vary depending on which row is the current row. The frame can be
specified in RANGE, ROAS5 or GROUPS mode; in each case, it runs from the f r ane_st art to the
frame_end. If f rame_end isomitted, the end defaults to CURRENT ROW

A frame_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE or GROUPS mode, af rane_st art of CURRENT ROWmeans the frame starts with the
current row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the
current row), while af r ame_end of CURRENT ROWmMmeans the frame ends with the current row's
last peer row. In ROAS mode, CURRENT ROWsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of
the of f set depends on the frame mode:

* In ROAS mode, the of f set must yield anon-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GROUPS mode, the of f set again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group isaset of rowsthat are equivalent inthe ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifiesthe maximum difference between the value of that columnin the current row and
itsvaluein preceding or following rows of theframe. The datatypeof theof f set expressionvaries
depending on the data type of the ordering column. For numeric ordering columns it is typicaly
of the same type as the ordering column, but for datetime ordering columnsit isani nt er val .
For example, if the ordering column is of type dat e or ti mest anp, one could write RANGE
BETVEEN '1 day' PRECEDI NG AND '10 days' FOLLOW NG Theof fset istill
required to be non-null and non-negative, though the meaning of “non-negative” depends on its
data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition,
so that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROAE and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NGare equivaent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r anme_excl usi on option allows rows around the current row to be excluded from the frame,
even if they would be included according to the frame start and frame end options. EXCLUDE CUR-
RENT ROWexcludesthe current row from the frame. EXCLUDE GROUP excludesthe current row and
its ordering peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the
frame, but not the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default
behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROWWith ORDER BY, thissetsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without

49

SQL Syntax

4.2.9.

ORDER BY, this means all rows of the partition are included in the window frame, since al rows
become peers of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f r ane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
of frame_start andfrane_end optionsthan the f rame_st art choice does — for example
RANGE BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot allowed. But, for example,
ROAS BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGis allowed, even though it would never
select any rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.64. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY vy). Theasterisk (*) is customar-
ily not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to atable column); the system will automatically
apply atype cast in such cases. However, automatic casting isonly donefor caststhat are marked “ OK
to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax.
Thisrestriction isintended to prevent surprising conversions from being applied silently.

It isalso possible to specify atype cast using a function-like syntax:

typenane (expression)

However, thisonly worksfor typeswhose names are also valid as function names. For example, dou-
bl e preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the namesi n-

50

SQL Syntax

terval ,time,andti mest anp canonly beusedinthisfashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function
to perform the conversion. By convention, these conversion functions have the same name as
their output type, and thusthe“function-like syntax” isnothing morethan adirect invocation of
theunderlying conversion function. Obviously, thisisnot something that aportable application
should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:

expr COLLATE collation

wherecol | at i on isapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved inthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 24.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C' > 'foo';

But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

51

SQL Syntax

4.2.11. Scalar Subqueries

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subguery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4] ;
array

By default, the array element type is the common type of the member expressions, determined using
thesamerulesasfor UNI ON or CASE constructs (see Section 10.5). Y ou can override thisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same resullt:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

52

SQL Syntax

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates au-
tomatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROMarr
array

{{{1,2},{3,4}},{{5,6},{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from the results of asubquery. In thisform, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that builds arow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or

53

SQL Syntax

more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON1,2.5,'this is a test');

The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usualy more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RO t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);

CREATE FUNCTI ON getf 1(nytabl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowtype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(ROWN1,2.5,'this is a test')::nmytable);
getfl

SELECT getf1(CAST(ROW 11,'this is a test',2.5) AS nmyrowtype));
getfl

SQL Syntax

11
(1 row

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with | S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.24. Row constructors can aso be used in connection with subqueries,
as discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then sonef unc() would (probably) not be called at all. The same would be the case if one wrote;

SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 38.7,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

55

SQL Syntax

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

islikely to result in adivision-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table hasx > 0 so that the ELSE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local vari-
ables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions, for
example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than just
nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expres-
sion contained within it, because aggregate expressions are computed before other expressionsin a
SELECT list or HAVI NG clause are considered. For example, the following query can cause a divi-
sion-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But thisis particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)

56

SQL Syntax

4.3.1.

4.3.2.

END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
isone optional parameter upper case which defaultstof al se. Thea and b inputswill be concate-
nated, and forced to either upper or lower case depending on theupper case parameter. Theremain-
ing details of this function definition are not important here (see Chapter 38 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All arguments are specified in order. Theresult isupper casesinceupper case isspecified ast r ue.
Another exampleis:

SELECT concat _| ower _or_upper(' Hello', "Wrld');
concat _| ower _or _upper

hell o worl d

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument ex-
pression. For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld', uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row

57

SQL Syntax

4.3.3.

SELECT concat _| ower _or _upper(a => 'Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In thisexample, that addsittle except documentation. With amore complex function having
numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

58

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger . The table and column names follow the identifier syntax explained in Sec-
tion 4.1.1. The type names are usually aso identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,

59

Data Definition

price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL .)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when thetableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

60

Data Definition

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)

wherethenext val () function supplies successive valuesfrom asequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns: stored and virtual. A
stored generated column is computed when it is written (inserted or updated) and occupies storage as
if it wereanormal column. A virtual generated column occupies no storage and is computed when it is
read. Thus, avirtual generated columnissimilar to aview and astored generated columnissimilar toa
materialized view (except that it is aways updated automatically). PostgreSQL currently implements
only stored generated columns.

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for
example:

CREATE TABLE peopl e (

hei ght _cm nureri c,
hei ght _in nunmeric GENERATED ALWAYS AS (height _cm/ 2.54) STORED
)

Thekeyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot
be specified for a generated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with adefault and agenerated column. The column default
is evaluated once when the row isfirst inserted if no other value was provided; a generated column is
updated whenever the row changes and cannot be overridden. A column default may not refer to other
columns of the table; a generation expression would normally do so. A column default can usevolatile
functions, for example r andon() or functions referring to the current time; thisis not allowed for
generated columns.

Severa restrictions apply to the definition of generated columns and tables involving generated
columns:

» Thegeneration expression can only useimmutable functions and cannot use subqueries or reference
anything other than the current row in any way.

» A generation expression cannot reference another generated column.

A generation expression cannot reference a system column, except t abl eoi d.

61

Data Definition

* A generated column cannot have a column default or an identity definition.

A generated column cannot be part of a partition key.

 Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.
* For inheritance and partitioning:

e |f a parent column is a generated column, its child column must also be a generated column;
however, the child column can have adifferent generation expression. The generation expression
that is actually applied during insert or update of a row is the one associated with the table that
the row is physicaly in. (Thisis unlike the behavior for column defaults: for those, the default
value associated with the table named in the query applies.)

« |If aparent column is not a generated column, its child column must not be generated either.

* For inherited tables, if you write a child column definition without any GENERATED clause in
CREATE TABLE ... | NHERI TS, thenits GENERATED clause will automatically be copied
from the parent. ALTER TABLE ... | NHERI T will insist that parent and child columns
already match asto generation status, but it will not requiretheir generation expressionsto match.

» Similarly for partitioned tables, if you write a child column definition without any GENERATED
clausein CREATE TABLE ... PARTI TI ON OF, then its GENERATED clause will auto-
matically be copied from the parent. ALTER TABLE ... ATTACH PARTI TI ONwill insist
that parent and child columns already match as to generation status, but it will not reguire their
generation expressions to match.

* In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns. If they do not all have the same generation expression, then
the desired expression for the child must be specified explicitly.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

» Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columnsin a BEFORE trigger will be reflected in generated columns. But conversely,
itisnot allowed to access generated columns in BEFORE triggers.

» Generated columns are skipped for logical replication and cannot be specified in a CREATE PUB-
L1 CATI ON column list.

5.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only pos-
itive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error israised. This applies even if the value came from the default
value definition.

5.4.1. Check Constraints

62

Data Definition

A check constraint is the most generic constraint type. It allows you to specify that the value in a cer-
tain column must satisfy a Boolean (truth-value) expression. For instance, to require positive product
prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
aname for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the commarseparated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one isatable constraint
becauseit iswritten separately from any one column definition. Column constraints can a so bewritten
astable constraints, whilethereverseis not necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),

63

Data Definition

di scounted_price nuneric,
CHECK (di scounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (

)

product _no i nteger,

name text,

price numeric CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted price > 0 AND price > discounted price)

It's amatter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

)

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new
or updated row being checked. While a CHECK constraint that violates this rule may appear
to work in simple tests, it cannot guarantee that the database will not reach a state in which
the constraint condition isfal se (due to subsequent changes of the other row(s) involved). This
would cause adatabase dump and restore to fail. Therestore could fail even when the compl ete
database state is consistent with the constraint, due to rows not being loaded in an order that
will satisfy the constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints
to express cross-row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a con-
tinuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/restore problem because pg_dump does not reinstall triggers
until after restoring data, so that the check will not be enforced during a dump/restore.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will al-
ways give the same result for the same input row. This assumption is what justifies examin-

64

Data Definition

ing CHECK constraints only when rows are inserted or updated, and not at other times. (The
warning above about not referencing other table dataisreally aspecial case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined function
in a CHECK expression, and then change the behavior of that function. PostgreSQL does not
disallow that, but it will not notice if there are rows in the table that now violate the CHECK
constraint. That would cause a subsequent database dump and restore to fail. The recommend-
ed way to handle such a change is to drop the constraint (using ALTER TABLE), adjust the
function definition, and re-add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (
product _no integer NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col unm_nane 1S NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback isthat you cannot give
explicit names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makesit easy to toggle the constraint in ascript file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

)
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

65

Data Definition

5.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or agroup of columns, is unique among
al therowsin the table. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nunmeric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

);
when written as a table constraint.
To define a unique constraint for a group of columns, write it as a table constraint with the column

names separated by commas:

CREATE TABLE examnpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT nust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating aunique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the val ues of
al of the columnsincluded in the constraint are equal. By default, two null values are not considered
equal in this comparison. That means even in the presence of aunique constraint it is possibleto store
duplicate rows that contain anull value in at least one of the constrained columns. This behavior can
be changed by adding the clause NULLS NOT DI STI NCT, like

CREATE TABLE products (

66

Data Definition

5.4.4.

product _no i nteger UNI QUE NULLS NOT DI STI NCT,
name text,
price nunmeric

)

or

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
UNI QUE NULLS NOT DI STI NCT (product _no)

)

Thedefault behavior can be specified explicitly using NULLS DI STI NCT. The default null treatment
in unigque constraints is implementation-defined according to the SQL standard, and other implemen-
tations have a different behavior. So be careful when developing applications that are intended to be
portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique iden-
tifier for rowsin the table. Thisrequires that the values be both unique and not null. So, the following
two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nuneric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can beany number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable

67

Data Definition

5.4.5.

to be able to identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin acolumn (or agroup of columns) must match the
values appearing in some row of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
qgquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can also constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES ot her _table (cl, c2)
)

68

Data Definition

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; thisis
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of
atree structure, you could write

CREATE TABLE tree (
node i d integer PRI MARY KEY,
parent _id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, whilenon-NULL par ent _i d entrieswould be
constrained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product _no i nteger PRI MARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_address text,

)

CREATE TABLE order_itens (
product _no integer REFERENCES products,
order _id integer REFERENCES orders,
quantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

Weknow that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that referencesit? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disdlow deleting a referenced product
» Delete the orders aswell
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship exam-
ple above: when someone wants to remove a product that is till referenced by an order (via or -
der it ens), wedisallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (

69

Data Definition

product _no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents del etion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON allows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when areferenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

The appropriate choice of ON DELETE action depends on what kinds of objects the related tables
represent. When the referencing tabl e represents something that is acomponent of what is represented
by the referenced table and cannot exist independently, then CASCADE could be appropriate. If the
two tables represent independent objects, then RESTRI CT or NO ACTI ON is more appropriate; an
application that actually wants to delete both objects would then have to be explicit about this and
run two delete commands. In the above example, order items are part of an order, and it is convenient
if they are deleted automatically if an order is deleted. But products and orders are different things,
and so making a deletion of a product automatically cause the deletion of some order items could be
considered problematic. TheactionsSET NULL or SET DEFAULT can beappropriateif aforeign-key
relationship represents optional information. For example, if the products table contained a reference
to a product manager, and the product manager entry gets deleted, then setting the product's product
manager to null or adefault might be useful.

The actions SET NULL and SET DEFAULT can take a column list to specify which columnsto set.
Normally, al columns of the foreign-key constraint are set; setting only a subset is useful in some
special cases. Consider the following example:

CREATE TABLE tenants (
tenant _id i nteger PRI MARY KEY

)

CREATE TABLE users (
tenant _id i nteger REFERENCES tenants ON DELETE CASCADE,
user _id integer NOT NULL,
PRI MARY KEY (tenant id, user_id)

)

CREATE TABLE posts (
tenant _id i nteger REFERENCES tenants ON DELETE CASCADE,

70

Data Definition

5.4.6.

post _id integer NOT NULL,

aut hor _id integer,

PRI MARY KEY (tenant _id, post_id),

FOREI GN KEY (tenant _id, author_id) REFERENCES users ON DELETE
SET NULL (author _id)

);

Without the specification of the column, the foreign key would also set the columnt enant _i d to
null, but that column is still required as part of the primary key.

Analogousto ON DELETE thereisaso ON UPDATE which is invoked when a referenced column
is changed (updated). The possible actions are the same, except that column lists cannot be specified
for SET NULL and SET DEFAULT. In this case, CASCADE means that the updated values of the
referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint, or
are columns from a non-partial unique index. This means that the referenced columns always have
an index to allow efficient lookups on whether a referencing row has a match. Since a DELETE of
a row from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columnstoo. Becausethisis not always needed, and there are many choices available on how to index,
the declaration of aforeign key constraint does not automatically create an index on the referencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at |east one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create anindex of thetype specified inthe constraint
declaration.

5.5. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

t abl eoi d

71

Data Definition

The OID of the table containing this row. This column is particularly handy for queries that se-
lect from partitioned tables (see Section 5.11) or inheritance hierarchies (see Section 5.10), since
without it, it's difficult to tell which individual table a row came from. Thet abl eoi d can be
joined against the oi d column of pg_cl ass to obtain the table name.

Xm n

Theidentity (transaction ID) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

Theidentity (transaction D) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of therow version within itstable. Notethat althoughthect i d can beused
to locate the row version very quickly, arow's ct i d will change if it is updated or moved by
VACUUM FULL. Thereforect i d is uselessasalong-term row identifier. A primary key should
be used to identify logical rows.

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction
IDstowrap around. Thisisnot afatal problem given appropriate maintenance procedures; see Chap-
ter 25 for details. It is unwise, however, to depend on the uniqueness of transaction | Ds over the long
term (more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.6. Modifying Tables

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: herewe are
interested in altering the definition, or structure, of the table.

You can:

* Add columns

* Remove columns

» Add constraints

* Remove constraints

e Change default values
 Change column data types
» Rename columns

* Renametables

72

Data Definition

5.6.1.

5.6.2.

5.6.3.

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN descri ption text;

The new column isinitially filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that
each row of the table needs to be updated when the ALTER TABLE statement is executed.
Instead, the default value will be returned the next time the row is accessed, and applied when
the tableis rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., cl ock_ti nmest anp()) each row will need
to be updated with the value calculated at the time ALTER TABLE is executed. To avoid a
potentially lengthy update operation, particularly if you intend to fill the column with mostly
nondefault values anyway, it may be preferable to add the column with no default, insert the
correct values using UPDATE, and then add any desired default as described below.

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description
< '');

Infact al the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;
Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will

not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri pti on CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

73

Data Definition

5.6.4.

5.6.5.

5.6.6.

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT some_name UNI QUE (product _no);

ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES
pr oduct _gr oups;

To add a not-null constraint, which cannot be written as atable constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise
the system assigned a generated name, which you need to find out. The psgl command\ d t abl e-
nane can be helpful here; other interfaces might also provide a way to inspect table details. Then
the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop anot null constraint
use:

ALTER TABLE products ALTER COLUWN product _no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
adefault where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nureric(10, 2);

74

Data Definition

5.6.7.

5.6.8.

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product_no TO product nunber;

Renaming a Table

Torename atable:

ALTER TABLE products RENAVE TO itens;

5.7. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To alow other rolesto useiit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REF-
ERENCES, TRI GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET and ALTER
SYSTEM The privileges applicable to a particular object vary depending on the object's type (table,
function, etc.). More detail about the meanings of these privileges appears below. The following sec-
tions and chapters will also show you how these privileges are used.

The right to modify or destroy an object isinherent in being the object's owner, and cannot be granted
or revokedinitself. (However, likeall privileges, that right can beinherited by members of the owning
role; see Section 22.3.)

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, for example
ALTER TABLE t abl e_nane OANER TO new_owner;

Superusers can aways do this; ordinary roles can only do it if they are both the current owner of the
object (or inherit the privileges of the owning role) and able to SET ROLE to the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 22.

75

Data Definition

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it ispossible to grant a privilege “with grant option”, which gives the recipient the right to grant
itinturnto others. If the grant option is subsequently revoked then all who received the privilege from
that recipient (directly or through achain of grants) will losethe privilege. For details seethe GRANT
and REV OKE reference pages.

An abject's owner can choose to revoke their own ordinary privileges, for example to make a table
read-only for themselves aswell as others. But owners are always treated as holding all grant options,
so they can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or
other table-like object. Also alows use of COPY TO. This privilege is also needed to reference
existing column valuesin UPDATE, DEL ETE, or MERGE. For sequences, thisprivilege also allows
use of thecur r val function. For large objects, this privilege allows the object to be read.

| NSERT

Allows | NSERT of a new row into atable, view, etc. Can be granted on specific column(s), in
which case only those columns may be assigned to in the | NSERT command (other columns will
therefore receive default values). Also alows use of COPY FROM

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any
nontrivial UPDATE command will require SELECT privilege as well, since it must reference
table columns to determine which rows to update, and/or to compute new values for columns.)
SELECT ... FOR UPDATEand SELECT ... FOR SHARE aso require this privilege on
at least one column, in addition to the SELECT privilege. For sequences, this privilege allows
use of the next val and set val functions. For large objects, this privilege allows writing or
truncating the object.

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command
will require SELECT privilege aswell, since it must reference table columns to determine which
rows to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publicationsto be created within the database, and allows
trusted extensions to be installed within the database.

76

Data Definition

For schemas, allows new objects to be created within the schema. To rename an existing object,
you must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace,
and allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.
CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictions imposed by pg_hba. conf).

TEMPORARY
Allows temporary tablesto be created while using the database.
EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on
top of thefunction. Thisistheonly type of privilegethat isapplicableto functions and procedures.

USACE

For procedural languages, allows use of thelanguagefor the creation of functionsin that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own
privilegerequirementsare al so met). Essentially thisallowsthe granteeto “look up” objectswithin
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements
that have previously performed this lookup, so this is not a completely secure way to prevent
object access.

For sequences, allows use of the cur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and
other schema objects. (Note that this privilege does not control all “usage” of the type, such as
values of thetype appearing in queries. It only prevents objects from being created that depend on
the type. The main purpose of this privilege is controlling which users can create dependencies
on atype, which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

SET

Allowsaserver configuration parameter to be set to anew value within the current session. (While
this privilege can be granted on any parameter, it is meaningless except for parametersthat would
normally require superuser privilege to set.)

ALTER SYSTEM

Allows a server configuration parameter to be configured to a new value using the ALTER
SYSTEM command.

The privilegesrequired by other commandsarelisted on thereference page of the respective command.

PostgreSQL grants privileges on some types of objects to PUBLI C by default when the objects are
created. No privileges are granted to PUBLI C by default on tables, table columns, sequences, foreign

77

Data Definition

data wrappers, foreign servers, large objects, schemas, tablespaces, or configuration parameters. For
other types of objects, the default privileges granted to PUBLI C are as follows: CONNECT and TEM
PORARY (create temporary tables) privileges for databases; EXECUTE privilege for functions and
procedures; and USAGE privilege for languages and data types (including domains). The object owner
can, of course, REVOKE both default and expressly granted privileges. (For maximum security, issue
the REVOKE in the same transaction that creates the object; then thereis no window in which another
user can use the object.) Also, these default privilege settings can be overridden using the ALTER
DEFAULT PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL (Access

Control List) values. You will see these letters in the output of the psgl commands listed below, or
when looking at ACL columns of system catal ogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and ta-
ble-like objects), table column

| NSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table
column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTI ON, PROCEDURE

USAGE U DOVAI N, FOREI GN DATA WRAPPER,
FOREI GN SERVER, LANGUAGE, SCHEMA,
SEQUENCE, TYPE

SET s PARAMVETER

ALTER SYSTEM A PARAMETER

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations
shown above. It also shows the psgl command that can be used to examine privilege settings for each
object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psgl Command
Privileges

DATABASE CTc TC \

DOVAI N U U \ dD+

FUNCTI ON or PROCEDURE X X \ df +

FORElI GN DATA WRAPPER U none \ dew+

FORElI GN SERVER U none \ des+

LANGUAGE U U \dL+

LARCE OBJECT rw none \dl +

78

Data Definition

Object Type All Privileges Default PUBLI C |psql Command
Privileges

PARAMETER SA none \ dconfi g+

SCHEMVA uc none \dn+

SEQUENCE rwJ none \ dp

TABLE (and table-like objects) ar wdDxt none \dp

Table column ar wx none \dp

TABLESPACE C none \ db+

TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as a list of acl i t em
entries, each having the format:

grant ee=privil ege-abbreviation[*].../grantor

Eachacl i t emlistsall the permissions of one grantee that have been granted by a particular grantor.
Specific privileges are represented by one-letter abbreviations from Table 5.1, with * appended if the
privilege was granted with grant option. For example, cal vi n=r *w/ hobbes specifiesthat therole
cal vi n has the privilege SELECT (r) with grant option (*) as well as the non-grantable privilege
UPDATE (w), both granted by the role hobbes. If cal vi n also has some privileges on the same
object granted by a different grantor, those would appear as a separate acl i t ementry. An empty
granteefieldinan acl i t emstandsfor PUBLI C.

As an example, suppose that user mi r i amcreates table nyt abl e and does:
GRANT SELECT ON nytable TO PUBLI C

GRANT SELECT, UPDATE, | NSERT ON mytabl e TO admi n;
GRANT SELECT (col 1), UPDATE (col1l) ON nytable TO nmiriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schenma | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- Fom e e e e e e
o e N
public | mytable | table | miriamrarwdDxt/mriam+ col 1:
+
| | | =r/mriam +| mriamrw=rw
mriam |
| | | admin=arw mriam |
|
(1 row

If the“ Accessprivileges’ columnisempty for agiven object, it meansthe object has default privileges
(thatis, itsprivilegesentry in therelevant system catalog isnull). Default privileges alwaysinclude all
privileges for the owner, and can include some privileges for PUBLI C depending on the object type,
as explained above. The first GRANT or REVOKE on an object will instantiate the default privileges
(producing, for example, m ri amrar wdDxt / mi r i an) and then modify them per the specified re-
quest. Similarly, entries are shown in “Column privileges’ only for columns with nondefault privi-
leges. (Note: for this purpose, “default privileges’ always means the built-in default privilegesfor the
object'stype. An object whose privileges have been affected by an ALTER DEFAULT PRI VI LEGES
command will always be shown with an explicit privilege entry that includesthe effects of the ALTER.)

79

Data Definition

Notice that the owner'simplicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according tothe SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURI-
TY), al normal access to the table for selecting rows or modifying rows must be allowed by a row
security policy. (However, the table's owner is typically not subject to row security policies.) If no
policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can be
modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are not
subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY com-
mand, and dropped using the DROP POLICY command. To enable and disable row security for a
given table, use the ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therulethat a
given role has the privileges of al roles that they are amember of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members

of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_ emil
text);

80

Data Definition

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesaW TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no roleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in auser s table, a simple policy
can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user_nanme = current_user);

Thisworks similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then al rowsin the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PR MARY KEY,
gid int NOT NULL,
real _nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
hone _dir text NOT NULL,
shel | text NOT NULL
)
CREATE ROLE admin; -- Administrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

81

Data Definition

-- Popul ate the table
| NSERT | NTO passwd VALUES
("adm n','xxx',0,0," Addm n',"'111-222-3333"' ,null,"'/root',"'/bin/
dash');
| NSERT | NTO passwd VALUES
("bob','xxx"',1,1,"Bob',"' 123-456-7890', null,"'/hone/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx',2,1,"Alice','098-765-4321" ,null,'/hone/alice' "'/
bi n/ zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURI TY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh

82

Data Definition

alice | xxx | 2| 1| Aice | 098-765-4321 |
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for table passwd

post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from
passwd;
user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)

post gr es=> update passwd set user_nane = 'joe';
ERROR: permi ssion denied for table passwd

-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admn';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”
post gres=> del ete from passwd;

ERROR: permi ssion denied for table passwd

postgres=> insert into passwd (user_nane) values ('xxx');
ERROR: permi ssion denied for table passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
require the administrator to be connected over alocal Unix socket to accesstherecords of the passwd
table:

CREATE POLICY adm n_l ocal _only ON passwd AS RESTRI CTI VE TO admi n

USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

83

Data Definition

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nanme | home_phone |
extra_info | home_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when de-
veloping schemas and row level policiesto avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be ac-
cessed or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS,
in the policy expressions. Be aware however that such accesses can creste race conditions that could
allow information leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_nane text NOT NULL);

I NSERT | NTO groups VALUES

(1, "low),
(2, 'nmediun),
(5, "high);
GRANT ALL ON groups TO alice; -- alice is the adninistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),

Data Definition

(' bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLI CY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dightly secret” information, but decides that mal -
| or y should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id = 1 WHERE user_nanme = "mallory';

UPDATE i nformation SET info = 'secret frommallory" WHERE group_id
= 2;

COW T;

That looks safe; thereisno window whereinmal | or y should be ableto seethe* secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transactionisin READ COVM TTED mode, it ispossible for her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks
waiting for al i ce'stransaction to commit, then fetches the updated row contents thanks to the FOR
UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from user s,
because that sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snap-
shot taken at the start of the query. Therefore, the policy expression teststhe old value of mal | ory's
privilege level and allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR
SHARE in sub-SELECTSsin row security policies. However, that requires granting UPDATE privilege
on the referenced table (here user s) to the affected users, which might be undesirable. (But another
row security policy could be applied to prevent them from actually exercising that privilege; or the
sub-SELECT could be embedded into a security definer function.) Also, heavy concurrent use of row

85

Data Definition

share locks on the referenced table could pose a performance problem, especially if updates of it are
frequent. Another solution, practical if updates of the referenced table are infrequent, is to take an
ACCESS EXCLUSI VE lock on the referenced table when updating it, so that no concurrent transac-
tions could be examining old row values. Or one could just wait for all concurrent transactionsto end
after committing an update of the referenced table and before making changes that rely on the new
security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

5.9.1.

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access datain a
single database, the one specified in the connection request.

Note

Users of acluster do not necessarily have the privilege to access every databasein the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe in two
databases in the same cluster; but the system can be configured to allow j oe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschena can
containtablesnamed myt abl e. Unlike databases, schemasare not rigidly separated: auser can access
objectsin any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many usersto use one database without interfering with each other.
» To organize database objectsinto logical groupsto make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA nyschems;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schemna. t abl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

86

Data Definition

5.9.2.

5.9.3.

Actually, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisis just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE myschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHEMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schenma_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.

87

Data Definition

If thereis no match in the search path, an error isreported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that refer-
ences precisely the same objects every time. It aso opens up the potential for users to change the be-
havior of other users' queries, maliciously or accidentally. Dueto the prevalence of unqualified names
inqueriesand their usein PostgreSQL internals, adding aschemato sear ch_pat h effectively trusts
all users having CREATE privilege on that schema. When you run an ordinary query, amalicious user
able to create objects in a schema of your search path can take control and execute arbitrary SQL
functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE nyt abl e;

Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipulate the schema search path.

88

Data Definition

5.9.4.

5.9.5.

5.9.6.

The search path works in the same way for data type names, function names, and operator names asiit
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schemma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USACE privilege on the schema. By default, everyone has that privilege
on the schema publ i c. To allow users to make use of the objectsin a schema, additional privileges
might need to be granted, as appropriate for the object.

A user can also be alowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. In databases upgraded from PostgreSQL 14 or earlier,
everyone has that privilege on the schemapubl i c. Some usage patterns call for revoking that priv-

ilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C

(The first “public” is the schema, the second “public” means “every user”. In the first senseit is an
identifier, in the second sense it is akey word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

The System Catalog Schema

In addition to publ i ¢ and user-created schemas, each database contains apg_cat al og schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_cat -

al og is aways effectively part of the search path. If it is not named explicitly in the path then it is
implicitly searched before searching the path's schemas. This ensures that built-in names will always
be findable. However, you can explicitly place pg_cat al og at the end of your search path if you
prefer to have user-defined names override built-in names.

Since system table namesbegin with pg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if some future version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use
a secure schema usage pattern, users wishing to securely query that database would take protec-
tive action at the beginning of each session. Specifically, they would begin each session by setting
sear ch_pat h to the empty string or otherwise removing schemas that are writable by non-supe-
rusers from sear ch_pat h. There are a few usage patterns easily supported by the default config-
uration:

89

Data Definition

5.9.7.

5.10

 Constrain ordinary users to user-private schemas. To implement this pattern, first ensure that no
schemas have public CREATE privileges. Then, for every user needing to create non-temporary
objects, create a schema with the same name as that user, for example CREATE SCHEMA al i ce
AUTHORI ZATI ON al i ce. (Recall that the default search path startswith $user , which resolves
to the user name. Therefore, if each user has a separate schema, they access their own schemas
by default.) This pattern is a secure schema usage pattern unless an untrusted user is the database
owner or has been granted ADM N OPTI ON on arelevant role, in which case no secure schema
usage pattern exists.

In PostgreSQL 15 and later, the default configuration supports this usage pattern. In prior versions,
or when using a database that has been upgraded from a prior version, you will need to remove
the public CREATE privilege from the publ i ¢ schema (issue REVOKE CREATE ON SCHEMA
public FROM PUBLI C). Then consider auditing the publ i ¢ schema for objects named like
objectsin schemapg_cat al og.

» Removethe public schemafrom the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Then, grant privilegesto create
inthe public schema. Only qualified nameswill choose public schemaobjects. While qualified table
references arefine, callsto functionsin the public schemawill be unsafe or unreliable. If you create
functions or extensions in the public schema, use the first pattern instead. Otherwise, like the first
pattern, this is secure unless an untrusted user is the database owner or has been granted ADM N
OPTI ONon arelevant role.

» Keepthedefault search path, and grant privilegesto createin the public schema. All usersaccessthe
public schemaimplicitly. This simulates the situation where schemas are not available at all, giving
asmooth transition from the non-schema-aware world. However, thisis never asecure pattern. Itis
acceptable only when the database has a single user or afew mutually-trusting users. In databases
upgraded from PostgreSQL 14 or earlier, thisis the default.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivaent in a database
system that implements only the basic schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _nane. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at al.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritance feature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular

90

Data Definition

state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on fl oat,
el evation i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extra column, st at e, that showstheir state.

In PostgreSQL., a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus all of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of al cities, including state capitals, that
arelocated at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | elevation
___________ e e e e m - -
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, el evation

91

Data Definition

FROM ci ti es*
VWHERE el evati on > 500;

Writing * is not necessary, since this behavior is aways the default. However, this syntax is still
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem

column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns;

tabl eoid | nane | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.elevation
FROM cities ¢, pg _class p
WHERE c. el evation > 500 AND c.tableoid = p.oid;

which returns;

rel nane | nane | elevation
__________ o
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect isto usether egcl ass aiastype, which will print the table OID
symbolically:

SELECT c. tabl eoi d::regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT awaysinsertsinto exactly thetable specified. In some casesit ispossibleto redirect
the insertion using a rule (see Chapter 41). However that does not help for the above case because
theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

92

Data Definition

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table's definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columnsare“ merged” so that thereisonly one such columninthechild table. To
be merged, columns must have the same datatypes, elsean error israi sed. | nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit camefrom ismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Tableinheritanceistypically established when the child table is created, using thel NHERI TS clause
of the CREATE TABLE statement. Alternatively, atable which isalready defined in acompatible way
can have anew parent relationship added, using the | NHERI T variant of ALTER TABLE. To do this
the new child table must already include columns with the same names and types as the columns of the
parent. It must aso include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from achild using the NO | NHERI T variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when
the inheritance relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. Thiscreatesanew table with the same columns as the source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down
the inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only pos-
sible when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, grant-
ing UPDATE permission on the ci t i es table implies permission to update rowsin thecapi t al s
table as well, when they are accessed through ci t i es. This preserves the appearance that the data
is (also) in the parent table. But the capi t al s table could not be updated directly without an addi-
tional grant. In asimilar way, the parent table's row security policies (see Section 5.8) are applied to
rows coming from child tables during an inherited query. A child table's policies, if any, are applied
only when it is the table explicitly named in the query; and in that case, any policies attached to its
parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

Notethat not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

93

Data Definition

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If wedeclared ci ti es.nane to be UNI QUE or a PRI MARY KEY, thiswould not stop the cap-
i tal s tablefrom having rowswith namesduplicating rowsinci t i es. And those duplicate rows
would by default show up in queriesfromci t i es. Infact, by default capi t al s would have no
unique constraint at all, and so could contain multiple rows with the same name. Y ou could add a
unique constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchiesis implemented for declarative parti-
tioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful
for your application.

5.11. Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.11.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be im-
proved by using a sequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage patternis
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTI TI ON, isfar faster than abulk operation. These commands
aso entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The
exact point at which atable will benefit from partitioning depends on the application, although arule
of thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableispartitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if

94

Data Definition

one partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10
belongs to the second partition not the first.

List Partitioning
Thetableis partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

Thetableis partitioned by specifying amodulus and aremainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus
will produce the specified remainder.

If your application needsto use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL allows you to declare that a table is divided into partitions. The table that is divided is
referred to as apartitioned table. The declaration includes the partitioning method as described above,
plusalist of columns or expressions to be used as the partition key.

Thepartitioned tableitself isa“virtual” table having no storage of itsown. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rowsinserted into a partitioned table
will berouted to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of arow will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although
all partitions must have the same columns as their partitioned parent, partitions may have their own
indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE
for more details on creating partitioned tables and partitions.

Itisnot possibleto turn aregular tableinto a partitioned table or vice versa. However, it is possible to
add an existing regular or partitioned table as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standal one table; this can simplify and speed up many main-
tenance processes. See ALTER TABLE to learn more about the ATTACH PARTI TI ONand DETACH
PARTI Tl ON sub-commands.

Partitions can also be foreign tables, although considerable careis needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

CREATE TABLE neasurement (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of thistable will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to keep only the most recent 3 yearsworth of data. At the beginning

95

Data Definition

of each month wewill remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Createthenreasur enent table asapartitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANCE in this case) and the list of column(s) to use as
the partition key.

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdate);

2. Createpartitions. Each partition'sdefinition must specify boundsthat correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables).
It is possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement
of deleting one month's data at atime. So the commands might look like:

CREATE TABLE neasurenent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01");

CREATE TABLE neasur enent _y2006n03 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-03-01') TO ('2006-04-01");

CREATE TABLE neasurenent _y2007nmll PARTI TI ON OF neasurenent
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE neasurenent _y2007nml2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenent _y2008n01 PARTI TI ON OF neasurenent
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (parall el _workers = 4)
TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clausein the com-
mands used to create individual partitions, for example:

CREATE TABLE neasur enent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of neasur ement _y2006n02, any datainserted into measur enent
that is mapped to neasur erent _y2006n02 (or datathat is directly inserted into neasur e-
ment _y2006n02, which is allowed provided its partition constraint is satisfied) will be further

96

Data Definition

redirected to oneof itspartitionsbased onthepeakt enp column. The partition key specified may
overlap with the parent's partition key, although care should be taken when specifying the bounds
of asub-partition such that the set of datait accepts constitutes a subset of what the partition's own
bounds allow; the system does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Itisnot necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the par-
titioned table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This
automatically creates a matching index on each partition, and any partitions you create or attach
later will also have such an index. An index or unique constraint declared on a partitioned table
is“virtua” in the same way that the partitioned table is: the actual dataisin child indexes on the
individual partition tables.

CREATE | NDEX ON neasurenent (| ogdate);
4. Ensure that the enable partition_pruning configuration parameter is not disabled in post -
gresql . conf . Ifitis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
ascript that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accessto it asatableinits own right. This hastwo forms:

ALTER TABLE neasurenment DETACH PARTI TI ON neasur enent _y2006n02;
ALTER TABLE neasurenment DETACH PARTI TI ON nmeasur enent _y2006n0D2
CONCURRENTLY;

These alow further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the data using COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports. The
first form of the command requires an ACCESS EXCLUSI VE lock on the parent table. Adding the
CONCURRENTLY qualifier asin the second form allows the detach operation to require only SHARE
UPDATE EXCLUSI VElock ontheparent table, but see ALTER TABLE ... DETACH PARTI Tl ON
for details on the restrictions.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

97

Data Definition

CREATE TABLE neasurenment _y2008nmD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

Asan dlternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and attach it as a partition later. This allows new data to be loaded, checked, and transformed
prior to it appearing in the partitioned table. Moreover, the ATTACH PARTI TI ON operation requires
only SHARE UPDATE EXCLUSI VE lock on the partitioned table, as opposed to the ACCESS EX-
CLUSI VE lock that isrequired by CREATE TABLE ... PARTI TI ON OF, soitismore friendly
to concurrent operations on the partitioned table. The CREATE TABLE ... LI KEoptionishelpful
to avoid tediously repeating the parent table's definition:

CREATE TABLE neasur enent _y2008nD2
(LI KE measur enent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nD2
CHECK (| ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent_y2008n0D2 from ' nmeasurenent y2008n0D2’
-- possibly sone other data preparation work

ALTER TABLE neasurenment ATTACH PARTI TI ON neasur enent _y2008nD2
FOR VALUES FROM (' 2008-02-01') TO (' 2008-03-01");

Beforerunningthe ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached that matches the expected partition constraint, as illustrated above. That
way, the system will be ableto skip the scan which is otherwise needed to validate theimplicit partition
constraint. Without the CHECK constraint, the table will be scanned to validate the partition constraint
while holding an ACCESS EXCLUSI VE lock on that partition. It is recommended to drop the now-
redundant CHECK constraint after the ATTACH PARTI TI ONiscomplete. If the table being attached
isitself apartitioned table, then each of its sub-partitions will be recursively locked and scanned until
either a suitable CHECK constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table hasa DEFAULT partition, it isrecommended to create a CHECK con-
straint which excludes the to-be-attached partition's constraint. If thisis not done then the DEFAULT
partition will be scanned to verify that it contains no records which should be located in the partition
being attached. This operation will be performed whilst holding an ACCESS EXCLUSI VE lock onthe
DEFAULT partition. If the DEFAULT partition is itself a partitioned table, then each of its partitions
will be recursively checked in the same way as the table being attached, as mentioned above.

As explained above, it is possible to create indexes on partitioned tables so that they are applied au-
tomatically to the entire hierarchy. This is very convenient, as not only will the existing partitions
become indexed, but also any partitions that are created in the future will. One limitation is that it's
not possible to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid
long lock times, it is possible to use CREATE | NDEX ON ONLY the partitioned table; such an index
ismarked invalid, and the partitions do not get the index applied automatically. The indexes on parti-
tions can be created individually using CONCURRENTL Y, and then attached to the index on the parent
using ALTER | NDEX .. ATTACH PARTI Tl ON. Once indexes for all partitions are attached to
the parent index, the parent index is marked valid automatically. Example;

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX CONCURRENTLY neasur enent _usl s_200602_i dx
ON neasur enment _y2006n02 (unitsal es);

98

Data Definition

ALTER | NDEX neasurenent _usls_idx
ATTACH PARTI TI ON neasur ement _usls_200602_i dx;

Thistechnique can be used with UNI QUE and PRI MARY KEY constraintstoo; theindexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY neasurenent ADD UNI QUE (city_id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city_id, |ogdate);
ALTER | NDEX neasurenent _city_id_| ogdate key
ATTACH PARTI TI ON neasur enent _y2006n02_city_id_| ogdate_key;

5.11.2.3. Limitations

The following limitations apply to partitioned tables:

» To create aunique or primary key constraint on a partitioned table, the partition keys must not in-
clude any expressions or function calls and the constraint's columns must include all of the partition
key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicatesin different partitions.

» There is no way to create an exclusion constraint spanning the whole partitioned table. It is only
possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

* BEFORE ROWItriggers on | NSERT cannot change which partition is the final destination for a
new row.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is tem-
porary. When using temporary relations, all members of the partition tree have to be from the same
session.

Individual partitionsarelinked to their partitioned tabl e using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can atable inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, t abl eoi d and all the normal rules of inheritance apply as described in Section 5.10, with
afew exceptions:

* Partitions cannot have columnsthat are not present in the parent. It isnot possibleto specify columns
when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tablesmay be added asapartition with ALTER TABLE . . .
ATTACH PARTI TI ONonly if their columns exactly match the parent.

» Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its parti-
tions. CHECK constraintsthat aremarked NO | NHERI T are not allowed to be created on partitioned
tables. You cannot drop aNOT NULL constraint on a partition's column if the same constraint is
present in the parent table.

e Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error for any constraints other

99

Data Definition

than UNI QUE and PRI MARY KEY. Instead, constraints on the partitions themselves can be added
and (if they are not present in the parent table) dropped.

» As apartitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a parti-
tioned table will always return an error.

5.11.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allowsfor several features not supported by declarative partitioning, such as:

* For declarative partitioning, partitions must have exactly the same set of columns asthe partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

 Tableinheritance allows for multiple inheritance.

 Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
alows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

5.11.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “root” table, from which all of the “child” tables will inherit. This table will contain
no data. Do not define any check constraints on this table, unless you intend them to be applied
equally to al child tables. There is no point in defining any indexes or unique constraints on it,
either. For our example, the root tableisthe neasur enment table as originally defined:

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

)

2. Create several “child” tables that each inherit from the root table. Normally, these tables will not
add any columnsto the set inherited from theroot. Just aswith declarative partitioning, these tables
arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasurenent _y2006n02

() INHERI TS (nmeasurenent);
CREATE TABLE neasur enent _y2006n03 (

I NHERI TS (neasurenent);

~— ~—

CREATE TABLE neasurenent _y2007nll () | NHERI TS (neasurenent);
CREATE TABLE neasurenent _y2007nl2 () | NHERI TS (neasurenent);
CREATE TABLE neasurenent _y2008n01 () | NHERI TS (neasurenent);

3. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typica exampleswould be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

100

Data Definition

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outlet| D BETWEEN 100 AND 200)
CHECK (outlet| D BETWEEN 200 AND 300)

Thisiswrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE neasur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
) INHERI TS (neasurenent);

CREATE TABLE neasur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE
' 2006- 04-01')
) INHERI TS (neasurenent);

CREATE TABLE neasur enent _y2007nll (
CHECK (| ogdate >= DATE '2007-11-01' AND | ogdate < DATE
'2007-12-01")
) INHERI TS (neasurenent);

CREATE TABLE neasur enent _y2007nl2 (
CHECK (| ogdate >= DATE ' 2007-12-01' AND | ogdate
'2008-01-01')
) INHERI TS (neasurenent);

N

DATE

CREATE TABLE neasur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008- 02-01')
) INHERI TS (neasurenent);
. For each child table, create an index on the key column(s), aswell as any other indexes you might
want.

CREATE | NDEX measur enent _y2006n02_1 ogdat e
measur enent _y2006nm02 (| ogdat e);
CREATE | NDEX measur enent _y2006n03_I| ogdat e
measur enent _y2006nm03 (| ogdat e);
CREATE | NDEX measur enent _y2007nll1_| ogdat e
measur enent _y2007ml1 (| ogdate);
CREATE | NDEX neasur enent _y2007nl2_| ogdate ON
measur enent _y2007ml2 (| ogdate);
CREATE | NDEX neasur enent _y2008n01_| ogdate ON
measur enent _y2008nm01 (| ogdate);
. We want our application to be ableto say | NSERT | NTO neasurenent ... and havethe
data be redirected into the appropriate child table. We can arrange that by attaching a suitable
trigger function to the root table. If data will be added only to the latest child, we can use a very
simple trigger function:

2 2 g

CREATE OR REPLACE FUNCTI ON neasurenent i nsert _trigger()
RETURNS TRI GGER AS $$

101

Data Definition

BEG N
I NSERT | NTO measur enment _y2008nm01 VALUES (NEW *);
RETURN NULL;

END,

$$

LANGUAGE pl pgsql ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurenent _tri gger
BEFORE | NSERT ON neasur enent
FOR EACH ROW EXECUTE FUNCTI ON neasur enent _i nsert _trigger();

We must redefine the trigger function each month so that it always inserts into the current child
table. The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which
the row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurement _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006- 03-01') THEN
| NSERT | NTO measur enment _y2006nm02 VALUES (NEW *);
ELSIF (NEW | ogdate >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006- 04-01') THEN
| NSERT | NTO measur enment _y2006nm03 VALUES (NEW *);

ELSIF (NEW | ogdate >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
I NSERT | NTO measur enment _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION ' Date out of range. Fix the
measur enent _insert _trigger() function!';
END | F;
RETURN NULL;
END,
$$

102

Data Definition

LANGUAGE pl pgsql ;

Thetrigger definition isthe same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that
child. For simplicity, we have shown the trigger's tests in the same order as in other parts
of thisexample.

A different approach to redirecting insertsinto the appropriate child tableisto set up rules, instead
of atrigger, on the root table. For example:

CREATE RULE neasurenent _i nsert_y2006n02 AS
ON | NSERT TO neasur ement WHERE
(logdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _i nsert_y2008n01 AS
ON | NSERT TO neasur ement WHERE
(logdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
' 2008- 02-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query
rather than once per row, so this method might be advantageous for bulk-insert situations. In most
cases, however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the root. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that there isno simple way to force an error if the set
of rules doesn't cover the insertion date; the datawill silently go into the root table instead.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in post -
gr esqgl . conf ; otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein its
own right:

103

Data Definition

ALTER TABLE measur enment _y2006nmD2 NO | NHERI T neasur enent ;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01")
) INHERI TS (neasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible
to queries on the parent table.

CREATE TABLE neasur enment _y2008n0D2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasurenent _y2008n0D2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01");
\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'
-- possibly some other data preparation work
ALTER TABLE neasur enment _y2008nD2 | NHERI T measur enent ;

5.11.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereis no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

* Indexesand foreign key constraints apply to singletablesand not to their inheritance children, hence
they have some caveats to be aware of.

» Theschemesshown here assumethat the values of arow'skey column(s) never change, or at least do
not change enough to requireit to moveto another partition. An UPDATE that attemptsto do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them
on each child table individually. A command like:

ANALYZE measur enent ;
will only process the root table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

 Triggers or rules will be needed to route rows to the desired child table, unless the application is

explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

104

Data Definition

Partition pruning is a query optimization technique that improves performance for declaratively par-
titioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent

table. With partition pruning enabled, the planner will examine the definition of each partition and
prove that the partition need not be scanned because it could not contain any rows meeting the query's
WHERE clause. When the planner can provethis, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's pos-
sible to show the difference between a plan for which partitions have been pruned and one for which
they have not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=188.76..188.77 rows=1 wi dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_y2006nD2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n0D3 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nmll1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2007nml2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n01 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

105

Data Definition

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys,
not by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns.
Whether an index needsto be created for agiven partition depends on whether you expect that queries
that scan the partition will generally scan a large part of the partition or just a small part. An index
will be helpful in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisisuseful asit can allow more partitionsto be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of
anested loop join. Partition pruning during execution can be performed at any of the following times:

 Duringinitiaization of the query plan. Partition pruning can be performed here for parameter values
which are known during the initialization phase of execution. Partitions which are pruned during
this stage will not show up in the query's EXPLAI Nor EXPLAI N ANALYZE. It is possible to de-
termine the number of partitions which were removed during this phase by observing the “ Subplans
Removed” property in the EXPLAI N output. It's important to note that any partitions removed by
the partition pruning done at this stage are still locked at the beginning of execution.

 During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and val ues from execution-time parameters such as those from parameterized nest-
ed loop joins. Since the value of these parameters may change many times during the execution of
the query, partition pruning is performed whenever one of the execution parameters being used by
partition pruning changes. Determining if partitions were pruned during this phase requires careful
inspection of the| oops property inthe EXPLAI N ANAL YZE output. Subplans corresponding to
different partitions may have different values for it depending on how many times each of them
was pruned during execution. Some may be shown as (never execut ed) if they were pruned
every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion isaquery optimization technique similar to partition pruning. Whileit is primar-
ily used for partitioning implemented using the legacy inheritance method, it can be used for other
purposes, including with declarative partitioning.

Constraint exclusion worksin avery similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusionisonly applied at plan time; thereis no attempt to remove partitions at execution time.

Thefact that constraint exclusion uses CHECK constraints, which makesit slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declar-
atively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be
ableto elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor of f , but an inter-
mediate setting called par t i t i on, which causes the technique to be applied only to queriesthat are
likely to be working on inheritance partitioned tables. The on setting causes the planner to examine
CHECK constraintsin all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusionisonly applied during query planning, unlike partition pruning, which can also
be applied during query execution.

 Consgtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as CUR-

106

Data Definition

RENT_TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, el se the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the par-
tition key.

 All constraintson all children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheri-
tance based partitioning will work well with up to perhaps a hundred child tables; don't try to use
many thousands of children.

5.11.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your
data. Often the best choice will beto partition by the column or set of columns which most commonly
appear in WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are
compatible with the partition bound constraints can be used to prune unneeded partitions. However,
you may be forced into making other decisions by requirementsfor the PRI MARY KEY or a UNI QUE
constraint. Removal of unwanted data is also a factor to consider when planning your partitioning
strategy. An entire partition can be detached fairly quickly, so it may be beneficial to design the par-
tition strategy in such away that al data to be removed at onceislocated in asingle partition.

Choosing the target number of partitions that the table should be divided into isalso acritical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can al so causeissues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's a'so important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implicationsif in several yearsyou instead find yourself with
alarge number of small customers. In this case, it may be better to choose to partition by HASH and
choose a reasonable number of partitions rather than trying to partition by L1 ST and hoping that the
number of customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitionsthat are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsin the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The
guery planner is generally able to handle partition hierarchies with up to a few thousand partitions
fairly well, provided that typical queries allow the query planner to prune al but a small number
of partitions. Planning times become longer and memory consumption becomes higher when more
partitions remain after the planner performs partition pruning. Another reason to be concerned about
having alarge number of partitions is that the server's memory consumption may grow significantly
over time, especially if many sessions touch large numbers of partitions. That's because each partition
requires its metadata to be loaded into the local memory of each session that touchesiit.

With data warehouse type workloads, it can make sense to use alarger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as
the magjority of processing time is spent during query execution. With either of these two types of
workload, it is important to make the right decisions early, as re-partitioning large quantities of data
can be painfully slow. Simulations of the intended workload are often beneficia for optimizing the

107

Data Definition

5.12

5.13

5.14

partitioning strategy. Never just assume that more partitions are better than fewer partitions, nor vice-
versa,

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such datais referred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are some foreign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 59.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it isused, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelationa database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to makethe
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible;

* Views

 Functions, procedures, and operators
» Datatypes and domains

 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we con-
sidered in Section 5.4.5, with the orders table depending on it, would result in an error message like
this:

108

Data Definition

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on table products

H NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. Y ou can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, tab2 theexistence
of aforeign key referencingt ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For a user-defined function or procedure whose body is defined as a string literal, PostgreSQL tracks
dependencies associated with the function's externally-visible properties, such as its argument and
result types, but not dependencies that could only be known by examining the function body. As an
example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'yellow,
‘green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACGE SQL;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function dependsonther ai nbowtype: dropping thetypewould force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The functionis still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

109

Data Definition

On the other hand, for a SQL -language function or procedure whose body iswritten in SQL -standard
style, the body is parsed at function definition time and all dependencies recognized by the parser are
stored. Thus, if we write the function above as

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS t ext
BEG N ATOM C

SELECT note FROM ny_col ors WHERE col or = $1;
END;

then the function's dependency ontheny_col or s table will be known and enforced by DROP.

110

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableis created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Datais inserted one row at atime. Y ou can aso insert more than one row in asingle
command, but it is not possible to insert something that is not acomplete row. Even if you know only
some column values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To

avoid thisyou can asolist the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, 'Cheese',

9.99);
I NSERT | NTO products (name, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');
I NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columnsor for the entire row:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
DEFAULT) ;

111

Data Manipulation

I NSERT | NTO products DEFAULT VALUES,;

Y ou can insert multiple rowsin a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, al therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. Thename of the table and column to update
2. Thenew value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does nat, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

112

Data Manipulation

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any
ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding datais only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rows in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM product s;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is espe-
cialy valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan | NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, sinceit would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnanme text, id serial
primary key);

113

Data Manipulation

I NSERT | NTO users (firstnane, |astnanme) VALUES ('Joe', 'Cool")
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG,

114

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wi th_queries] SELECT select |ist FROMtabl e_expression
[sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that there is atable called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For ex-
ample, the psgl program will display an ASCII-art table on the screen, while client libraries will offer
functions to extract individual values from the query result.) The select list specification * means all
columnsthat the table expression happensto provide. A select list can al so select asubset of the avail-
able columns or make calculations using the columns. For example, if t abl el has columns named
a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimple kind of table expression: it reads just one table. In general, table expres-
sions can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

Thisis more useful if the expressions in the select list return varying results. For example, you could
call afunction thisway:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transforma-

115

Queries

7.2.1.

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

The FROMClause

The FROM clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
guery, aJO N construct, or complex combinations of these. If more than one table referenceislisted
in the FROMclause, the tables are cross-joined (that is, the Cartesian product of their rows is formed,;
see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject to trans-
formations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the overall
table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more, be-
cause searching descendant tables is now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [join_condition]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types

Crossjoin

Tl CROSS JAO N T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by al columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA N binds more tightly than comma. For example FROM T1 CROSS JO N T2
I NNER JO N T3 ON condi ti onisnotthesameasFROM T1, T2 | NNER JO N

116

Queries

T3 ON condi ti on because the condi ti on can reference T1 in the first case but
not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has arow for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The USI NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

117

Queries

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaveslikeJO N . . .
ON TRUE, producing a cross-product join.

Note

USI NGisreasonably safefrom column changesin thejoined relationssince only thelisted
columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause thejoin
to combine that new column as well.

To put this together, assume we have tablest 1:

num | nane

then we get

the following results for the various joins:

=> SELECT * FROMt1l CRCSS JO N t2;
num | nane | num| val ue

T WWWNNNRP, R PP

7
~ 0 00T TUTO9 9O

(9

GQWkFRFUOOWERE OWwPRk

+
|
|
| zzz
|
|
|
|
|
|

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

=> SELECT * FROMt1 INNER JO N t2 USING (num;

num | n

ame | val ue

118

Queries

3| ¢ | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nane | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USING (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 51| zzz
(4 rows)

The join condition specified with ON can al so contain conditions that do not relate directly to thejoin.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| name | num| val ue
----- Ty U
1| a | 1| xxx
2| b | |
3] c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

119

Queries

=> SELECT * FROMt1 LEFT JON t2 ON t1.num = t2. num WHERE t 2. val ue

= " Xxx";

num| name | num| val ue

----- Ty
1| a | 1| xxx

(1 row

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisis called atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference ali as
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliasesis to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewherein the query. Thus, thisisnot valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
tableto itself, e.g.:

SELECT * FROM people AS nmother JO N people AS child ON nother.id =
chi I d. not her _i d;

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny_table AS b ...

SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, aswell asthetable
itself:

FROM tabl e reference [AS] alias (columl [, colum2 [, ...]])

120

Queries

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an diasis applied to the output of aJO N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JON your _table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) ASc

isnot valid; thetable alias a is not visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses. They may be assigned atable
alias name, and optionally column alias names (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_name. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aiasisoptional. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

According to the SQL standard, atable alias name must be supplied for asubquery. PostgreSQL allows
AS and the alias to be omitted, but writing one is good practice in SQL code that might be ported to
another system.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columnsreturned by table functions can beincluded in SELECT, JO N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROM syntax, with the results returned in
paralel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(columm_alias
[, ... DII

ROMS FROM function_call [, ...]) [WTH ORDI NALI TY]

[[AS] table alias [(colum_alias [, ...])]11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)

121

Queries

By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table alias [(colum_alias [, ... 1)]11]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonane text);

CREATE FUNCTI ON get f oo(i nt) RETURNS SETOF foo AS $$
SELECT * FROM f oo WHERE fooid = $1;
$$ LANGUAGE SQ.;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT f oosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

)1
CREATE VI EW vw getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_get f oo;

In some cases it is useful to define table functions that can return different column sets depending on
how they areinvoked. To support this, the table function can be declared as returning the pseudo-type
r ecor d with no QUT parameters. When such afunction isused in aquery, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query.
This syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the ROANS FROM) syntax, the col urm_defi ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM) syntax, acol urm_defini ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utm_defi ni ti on list can be written in place of a column alias list
following ROAS FROM) .

Consider this example:

122

Queries

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM
pg_proc’)
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

This example uses RONS FROM

SELECT *
FROM ROA5 FROM

(
json_to recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, d, s)
ORDER BY p;

40 | foo | 1
100 | bar | 2
| | 3

It joins two functions into a single FROMtarget.] son_t o_recor dset () isinstructed to return
two columns, thefirsti nt eger andthesecondt ext . Theresultof gener at e_seri es() isused
directly. The ORDER BY clause sorts the column values asintegers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROMcan be preceded by the key word LATERAL. This allows them to ref-
erence columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan al so be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitems in any case.

A LATERAL item can appear at thetop level in the FROMIist, or withinaJO Ntree. Inthelatter case
it can also refer to any itemsthat are on the left-hand side of aJ O Nthat it ison theright-hand side of .

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisis not especially useful since it has exactly the same result as the more conventional

123

Queries

1.2.2.

SELECT * FROM foo, bar WHERE bar.id = foo. bar_id;

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that verti ces(pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

or in several other equivalent formulations. (As aready mentioned, the LATERAL key word is unnec-
essary in this example, but we useit for clarity.)

Itisoften particularly handy to LEFT JO NtoaLATERAL subquery, so that source rowswill appear
intheresult even if the LATERAL subquery produces no rows for them. For example, if get _pr od-
uct _nanes() returnsthe names of products made by a manufacturer, but some manufacturersin
our table currently produce no products, we could find out which ones those are like this:

SELECT m name

FROM nmanufacturers m LEFT JO N LATERAL get product _names(m i d)
pname ON true

VWHERE pnane |'S NULL;

The WHERE Clause

The syntax of the WHERE clauseis

WHERE search_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e, if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; thisis not required, but otherwise the
VWHERE clause will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or inthe JO N
clause. For example, these table expressions are equivalent:

124

Queries

7.2.3.

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you useis mainly amatter of style. The JO N syntax in the FROMclause
is probably not as portable to other SQL database management systems, even though it isin
the SQL standard. For outer joins there is no choice: they must be done in the FROMclause.
The ON or USI NG clause of an outer join is not equivalent to a WHERE condition, because
it results in the addition of rows (for unmatched input rows) as well as the removal of rows
in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT cl FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT cl1 FROM t2 WHERE c2 >
fdt.cl)

f dt isthetable derived in the FROMclause. Rowsthat do not meet the search condition of the WHERE
clauseare eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col umm_r ef erence
[, grouping_colum_reference]...

The GROUP BY clause is used to group together those rows in a table that have the same valuesin
al the columns listed. The order in which the columns are listed does not matter. The effect is to

125

Queries

combine each set of rows having common values into one group row that represents all rows in the
group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
[
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

Ingenerd, if atableisgrouped, columnsthat are not listed in GROUP BY cannot be referenced except

in aggregate expressions. An example with aggregate expressionsiis:

=> SELECT x, sunm(y) FROM test1l GROUP BY x;
X | sum

c |
(3 rows

o
~ N oA

Here s umisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.21.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a
column. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product _id, p.nanme, (sun{s.units) * p.price) AS sales
FROM products p LEFT JO N sal es s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does
not have to be in the GROUP BY list sinceit is only used in an aggregate expression (sum . . .)),

126

Queries

which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

If the productstableis set up sothat, say, pr oduct _i d istheprimary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columns in the select list. Grouping by value expressions
instead of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressionsand to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sun(y) > 3;
X | sum

e
a | 4
b | 5
(2 rows)

=> SELECT x, sunm(y) FROMtest1l GROUP BY x HAVING x < 'c';
X | sum

e
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product_id, p.name, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sales s USI NG (product _id)
VWHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the ex-
pressionisonly truefor salesduring the last four weeks), whilethe HAVI NGclause restricts the output
to groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to bethe same in all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is asingle group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

127

Queries

7.2.4. GROUPI NG SETS, CUBE, and ROLLUP

M ore complex grouping operationsthan those described above are possibl e using the concept of group-
ing sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then
the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ e
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.63.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thusit is

equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
(e, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division,
and company-wide total.

A clause of the form

128

Queries

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (
(a b, c),
(a b),
(a, c),
(a),
(b, ¢c),
(b),
(c),
()

)

Theindividual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
isequivalent to
GROUPI NG SETS (
(a b, c, d),
(a b)
(c, d),
)

(
)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPI NG SETS (

(a b, c, d),
(a b, c),
(a)
()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsisthe cross product of the individual items. For example:

129

Queries

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

When specifying multiple grouping items together, the final set of grouping sets might contain du-
plicates. For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, b),
(a, c),
(a),
(a),
(a, c),
(a),
()

)

If these duplicates are undesirable, they can be removed using the DI STI NCT clause directly on the
GROUP BY. Therefore:

GROUP BY DI STINCT ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, ¢,
(a),
()
)

Thisis not the same asusing SELECT DI STI NCT because the output rows may still contain dupli-
cates. If any of the ungrouped columns contains NULL, it will be indistinguishable from the NULL
used when that same column is grouped.

Note

Theconstruct (a, b) isnormally recognized in expressions as arow constructor. Within the
GROUP BY clause, this does not apply at thetop levels of expressions, and (a, b) isparsed

130

Queries

7.2.5.

as alist of expressions as described above. If for some reason you need a row constructor in
agrouping expression, use RON a, b).

Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG then the rows seen by the window functions
are the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having equivalent PARTI TI ON
BY and ORDER BY clauses in their window definitions are guaranteed to see the same ordering of
the input rows, even if the ORDER BY does not uniquely determine the ordering. However, no guar-
antees are made about the evaluation of functions having different PARTI TI ON BY or ORDER BY
specifications. (In such cases a sort step is typically required between the passes of window function
evaluations, and the sort is not guaranteed to preserve ordering of rows that its ORDER BY sees as
equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clauseif you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. Thistable
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

Select-List Items

The simplest kind of select list is* which emits al columns that the table expression produces. Oth-
erwise, a select list is a commarseparated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available
in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, tbl2.a, tbll.b FROM...

When working with multipletables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbhl2.a FROM. ..
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values

131

Queries

7.3.2.

7.3.3.

substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

Column Labels

The entriesin the select list can be assigned names for subsequent processing, such as for use in an
CORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, thisis the name of
the function. For complex expressions, the system will generate a generic name.

The AS key word is usually optional, but in some cases where the desired column name matches a
PostgreSQL key word, you must write AS or double-quote the column name in order to avoid ambi-
guity. (Appendix C shows which key words require AS to be used as a column label.) For example,
FROMis one such key word, so this does not work:

SELECT a from b + ¢ AS sum FROM . ..
but either of these do:

SELECT a AS from b + ¢ AS sum FROM . ..
SELECT a "from', b + ¢ AS sum FROM ...

For greatest safety against possible future key word additions, it is recommended that you always
either write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROMclause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list isthe one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values

are considered egual in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

132

Queries

SELECT DI STI NCT ON (expression [, expression ...]) select_list

Here expr essi on is an arbitrary value expression that is evaluated for al rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqgueriesin FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNI ON, | NTERSECT,
EXCEPT)

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gueryl UNION [ALL] query?2
gueryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.
UNI ON effectively appendstheresult of quer y2 to theresult of quer y1 (although thereis no guar-
anteethat thisisthe order in which therows are actually returned). Furthermore, it eliminatesduplicate

rows from itsresult, in the sameway as DI STI NCT, unlessUNI ON ALL isused.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of quer y2.
Duplicate rows are eliminated unless | NTERSECT ALL isused.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (Thisis
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EX-
CEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which meansthat they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNI ON query2 EXCEPT query3

which isequivalent to

(queryl UNI ON query?2) EXCEPT query3

As shown here, you can use parentheses to control the order of evauation. Without parentheses,
UNI ON and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two op-
erators. Thus

queryl UNI ON query2 | NTERSECT query3

means

133

Queries

gueryl UNI ON (query2 | NTERSECT query3)

You can also surround an individual quer y with parentheses. This isimportant if the quer y needs
to use any of the clauses discussed in following sections, such asLI M T. Without parentheses, you'll
get a syntax error, or el se the clause will be understood as applying to the output of the set operation
rather than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNI ON (SELECT x FROMy LIM T 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not berelied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is:

SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” isdefined in terms of the < operator. Similarly, descending order
is determined with the > operator. 1

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null valuesin the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

134

Queries

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum + c; - -
wWr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT sel ect _|i st
FROM t abl e_expressi on
[ORDER BY ...]
[LIMT { nunmber | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET O is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rowsinto a
unique order. Otherwise you will get an unpredictabl e subset of the query’'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LI M T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnot abug; it isan inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

135

Queries

VALUES provides away to generate a“ constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates arow in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, '"two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col utm1, col uim2, ete. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, soit's usually better to override the default names with atable aliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS't
(numletter);
num| letter

1]

2| two

3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can useit as part of aUNI ON, or attach a
sort _specificati on(ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table Expres-
sions)

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that
can be a SELECT, | NSERT, UPDATE, DELETE, or MERGE.

136

Queries

7.8.1.

7.8.2.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sal es AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM top_regi ons)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines two
auxiliary statementsnamedr egi onal _sal es andt op_r egi ons, wheretheoutput of r egi on-
al _sal es isused intop_regi ons and the output of t op_r egi ons is used in the primary
SELECT query. Thisexample could have been written without W TH, but we'd have needed two levels
of nested sub-SELECTS. It'sa bit easier to follow thisway.

Recursive Queries

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthisquery to sum theintegersfrom 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sunm(n) FROM t;

The general form of arecursive W TH query is always a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain areference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include al remaining rowsin theresult of the recursive query, and al so place them in atemporary
working table.

2. Solong asthe working tableis not empty, repeat these steps:

a Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and

137

Queries

rows that duplicate any previous result row. Include al remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

While RECURSI VE allows queries to be specified recursively, internally such queries are
evaluated iteratively.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries aretypically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity * pr.quantity
FROM i ncl uded_parts pr, parts p
VWHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

7.8.2.1. Search Order

When computing atree traversal using arecursive query, you might want to order the resultsin either
depth-first or breadth-first order. This can be done by computing an ordering column alongside the
other datacolumns and using that to sort theresults at the end. Note that thisdoesnot actually control in
which order the query evaluation visits the rows; that is as alwaysin SQL implementati on-dependent.
This approach merely provides a convenient way to order the results afterwards.

To create adepth-first order, we compute for each result row an array of rows that we have visited so
far. For example, consider the following query that searchesatablet r ee usingal i nk field:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

138

Queries

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, path || t.id
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

In the general case where more than one field needs to be used to identify arow, use an array of rows.
For example, if we needed to track fieldsf 1 and f 2:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[ROWNt.f1, t.f2)]
FROM tree t

UNI ON ALL
SELECT t.id, t.link, t.data, path || RONt.f1l, t.f2)
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

Tip

Omit the ROA() syntax in the common case where only one field needs to be tracked. This
allows asimple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

W TH RECURSI VE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, depth + 1
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY dept h;

To get a stable sort, add data columns as secondary sorting columns.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order.
However, thisis an implementation detail and it is perhaps unsound to rely on it. The order of
the rows within each level is certainly undefined, so some explicit ordering might be desired
in any case.

Thereis built-in syntax to compute a depth- or breadth-first sort column. For example:

W TH RECURSI VE search_tree(id, link, data) AS (

139

Queries

SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL

SELECT t.id, t.link, t.data

FROM tree t, search_tree st

WHERE t.id = st.link
) SEARCH DEPTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

W TH RECURSI VE search_tree(id, link, data) AS (

SELECT t.id, t.link, t.data

FROM tree t

UNI ON ALL

SELECT t.id, t.link, t.data

FROM tree t, search_tree st

WHERE t.id = st.link
) SEARCH BREADTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

Thissyntax isinternally expanded to something similar to the above hand-written forms. The SEARCH
clause specifieswhether depth- or breadth first search iswanted, thelist of columnsto track for sorting,
and a column name that will contain the result data that can be used for sorting. That column will
implicitly be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or afew fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
again the following query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, |ink, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a “depth” output,
just changing UNI ON ALL to UNI ON would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columnsi s_cycl e and pat h to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path)

AS (
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[g. i d]
FROM gr aph g
UNI ON ALL

SELECT g.id, g.link, g.data, sg.depth + 1,

140

Queries

g.id = ANY(path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Asidefrom preventing cycles, the array valueis often useful in its own right as representing the “ path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path)
AS (
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[RON(g. f1, g.f2)]
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
RONg.f1, g.f2) = ANY(path),
path || RONg.f1, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM sear ch_graph;

Tip

Omit the RON) syntax in the common case where only one field needs to be checked to
recognhize a cycle. This alows a simple array rather than a composite-type array to be used,
gaining efficiency.

Thereis built-in syntax to simplify cycle detection. The above query can also be written like this:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM sear ch_gr aph;

and it will be internally rewritten to the above form. The CYCLE clause specifies first the list of
columns to track for cycle detection, then a column name that will show whether a cycle has been
detected, and finally the name of another column that will track the path. The cycle and path columns
will implicitly be added to the output rows of the CTE.

Tip

Thecycle path columniscomputed in the sameway asthe depth-first ordering column show in
the previous section. A query can have both a SEARCH and a CYCLE clause, but adepth-first

141

Queries

7.8.3.

search specification and a cycle detection specification would create redundant computations,
so it's more efficient to just use the CYCLE clause and order by the path column. If breadth-
first ordering is wanted, then specifying both SEARCH and CYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without theLI M T:

W TH RECURSI VE t(n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

Common Table Expression Materialization

A useful property of W TH queriesis that they are normally evaluated only once per execution of the
parent query, even if they are referred to more than once by the parent query or sibling W TH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a W TH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations
of functions with side-effects. However, the other side of this coin is that the optimizer is not able to
push restrictions from the parent query down into a multiply-referenced W TH query, since that might
affect al uses of the W TH query's output when it should affect only one. The multiply-referenced
W TH query will be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
guery demand only alimited number of rows.)

However, if a W TH query is non-recursive and side-effect-free (that is, it is a SELECT contain-
ing no volatile functions) then it can be folded into the parent query, allowing joint optimization of
the two query levels. By default, this happens if the parent query references the W TH query just
once, but not if it references the W TH query more than once. You can override that decision by
specifying MATERI ALI ZED to force separate calculation of the W TH query, or by specifying NOT
MATERI ALI ZEDto forceit to be merged into the parent query. Thelatter choice risks duplicate com-
putation of the W TH query, but it can till give a net savings if each usage of the W TH query needs
only asmall part of the W TH query's full output.

A simple example of theserulesis
WTH w AS (

SELECT * FROM big_table
)

SELECT * FROM w WHERE key = 1283;

ThisW TH query will be folded, producing the same execution plan as

SELECT * FROM bi g_tabl e WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key
= 123. Onthe other hand, in

142

Queries

7.8.4.

WTH w AS (
SELECT * FROM bi g_tabl e
)
SELECT * FROMw AS wl JO N w AS w2 ON wl. key = w2.ref
WHERE W2. key = 123;

the W TH query will be materialized, producing atemporary copy of bi g_t abl e that isthen joined
with itself — without benefit of any index. This query will be executed much more efficiently if
written as

W TH w AS NOT MATERI ALI ZED (
SELECT * FROM bi g_tabl e
)

SELECT * FROMw AS w1 JO N w AS w2 ON wl. key = w2.ref
VWHERE w2. key = 123;

so that the parent query's restrictions can be applied directly to scans of bi g_t abl e.

An example where NOT MATERI ALI ZED could be undesirable is

WTH w AS (
SELECT key, very_expensive_function(val) as f FROM sone_t abl e

)
SELECT * FROMw AS w1 JON w AS w2 ON wl.f = w2.f;

Here, materialization of the W TH query ensuresthat ver y_expensi ve_functi on isevauated
only once per table row, not twice.

The examples above only show W THbeing used with SELECT, but it can be attached in the same way
to | NSERT, UPDATE, DELETE, or MERGE. In each case it effectively provides temporary table(s)
that can be referred to in the main command.

Data-Modifying Statements in W TH

You can use most data-modifying statements (I NSERT, UPDATE, or DELETE, but not MERCE) in
W TH. This allows you to perform several different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM products
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01"
RETURNI NG *
)
I NSERT | NTO products_| og
SELECT * FROM noved_rows;

This query effectively moves rows from pr oduct s to products_| og. The DELETE in W TH
deletes the specified rows from pr oduct s, returning their contents by means of its RETURNI NG
clause; and then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-
SELECT within the | NSERT. Thisis necessary because data-modifying statements are only allowed
in W TH clauses that are attached to the top-level statement. However, normal W TH visibility rules
apply, so it is possible to refer to the W TH statement's output from the sub-SELECT.

143

Queries

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown
in the example above. It isthe output of the RETURNI NG clause, not the target table of the data-mod-
ifying statement, that forms the temporary table that can be referred to by the rest of the query. If a
data-modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table and
cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A not-
particularly-useful exampleis:

WTH t AS (
DELETE FROM f 00
)

DELETE FROM bar ;

Thisexamplewould removeal rowsfromtablesf oo and bar . The number of affected rowsreported
to the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part |IN (SELECT part FROM i ncl uded_parts);

This query would remove al direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that thisis differ-
ent from the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is
carried only asfar as the primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statementsin W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chap-
ter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNI NGdatais the only way
to communi cate changes between different W TH sub-statements and the main query. An example of
thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

144

Queries

the outer SELECT would return the updated data.

Trying to update the same row twice in asingle statement is not supported. Only one of the modifica-
tionstakesplace, but it isnot easy (and sometimes not possible) to reliably predict which one. Thisalso
appliesto deleting arow that was already updated in the same statement: only the updateis performed.
Therefore you should generally avoid trying to modify a single row twice in a single statement. In
particular avoid writing W TH sub-statements that could affect the same rows changed by the main
statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W TH must not have a con-
ditional rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

145

Chapter 8. Data Types

PostgreSQL has arich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TY PE command.

Table 8.1 shows al the built-in general-purpose data types. Most of the aternative names listed in

the“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description
bi gi nt int8 signed eight-byte integer
bi gseri al serial8 autoincrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] var bi t variable-length bit string
[(n)]
bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“byte array”)
character [(n)] char [(n)] |fixed-length character string
character varying [(n)] |varchar variable-length character string
[(n)]
cidr IPv4 or |Pv6 network address
circle circleon aplane
date calendar date (year, month, day)
doubl e precision float8 double precision floating-point num-
ber (8 bytes)
i net IPv4 or |Pv6 host address
i nteger int,int4 signed four-byte integer
interval [fields] time span
[(p)]
j son textual JSON data
j sonb binary JSON data, decomposed
I'ine infinite line on a plane
| seg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr 8 MAC (Media Access Control) address
(EUI-64 format)
noney currency amount
nuneric [(p, s)] deci nal exact numeric of selectable precision
[(p, s)]
pat h geometric path on aplane
pg_l sn PostgreSQL Log Sequence Number
pg_shapshot user-level transaction 1D snapshot
poi nt geometric point on aplane

146

Data Types

Name Aliases Description

pol ygon closed geometric path on aplane

r eal float4 single precision floating-point number
(4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoincrementing two-byte integer

seri al serial4 autoi ncrementing four-byte integer

t ext variable-length character string

time [(p) 1 [wthout time of day (no time zone)

tinme zone]

time [(p)] with tine timetz time of day, including time zone

Zone

timestamp [(p)] [with-
out tine zone]

date and time (no time zone)

timestanp [(p)] with
tinme zone

ti mestanptz

date and time, including time zone

tsquery

text search query

tsvector

text search document

t xi d_snapshot

user-level transaction 1D snapshot
(deprecated; see pg_snapshot)

uui d universally unique identifier
xmi XML data
Compatibility

i ng, bool ean, char, char act er

Thefollowing types (or spellings thereof) are specified by SQL: bi gi nt ,bi t,bit vary-
varyi ng, charact er, var char, dat e, dou-
ble precision,integer,interval, numeric, decimal, real, smallint,
t i me (with or without time zone), t i nest anp (with or without time zone), xn .

Each datatype has an external representation determined by itsinput and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such asthe date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size|Description Range

smal | i nt 2 bytes small-range integer -32768 to +32767

i nteger 4 bytes typical choicefor integer |-2147483648 to
+2147483647

bi gi nt 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807

147

Data Types

8.1.1.

8.1.2.

Name Storage Size|Description Range
deci mal variable user-specified precision, |up to 131072 digits before
exact the decimal point; up to
16383 digits after the deci-
mal point
nuneric variable user-specified precision, |up to 131072 digits before
exact the decimal point; up to
16383 digits after the deci-
mal point
r eal 4 bytes variable-precision, inexact |6 decimal digits precision
doubl e precision 8 bytes variable-precision, inexact |15 decimal digits precision
smal | seri al 2 bytes small autoincrementing in- |1 to 32767
teger
seri al 4 bytes autoincrementing integer | 1 to 2147483647
bi gseri al 8 bytes large autoincrementing in- |1 to
teger 9223372036854775807

The syntax of constants for the numeric typesis described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for moreinformation.
The following sections describe the typesin detail.

Integer Types

Thetypessmal | i nt,i nt eger,andbi gi nt store whole numbers, that is, numbers without frac-
tional components, of various ranges. Attemptsto store values outside of the allowed range will result
inan error.

Thetypei nt eger isthecommon choice, asit offersthe best balance between range, storage size, and
performance. Thesmal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt
type is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifiestheinteger typesi nt eger (ori nt),smal | i nt,andbi gi nt . Thetype names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ can store numberswith avery large number of digits. It isespecially recommend-
ed for storing monetary amounts and other quantities where exactness is required. Calculations with
nuner i ¢ valuesyield exact results where possible, e.g., addition, subtraction, multiplication. How-
ever, calculations on nuner i ¢ values are very slow compared to the integer types, or to the float-
ing-point types described in the next section.

We usethefollowing termsbelow: The precision of anuner i ¢ isthetotal count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
nuner i ¢ isthe count of decimal digitsin the fractional part, to the right of the decimal point. So the
number 23.5141 hasaprecision of 6 and ascale of 4. Integers can be considered to have ascale of zero.

Both the maximum precision and the maximum scale of anurrer i ¢ column can be configured. To
declare acolumn of type nuner i ¢ use the syntax:
NUMERI C(pr eci si on, scal e)

The precision must be positive, while the scale may be positive or negative (see below). Alternatively:

148

Data Types

NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates an “unconstrained numeric” column in which numeric values
of any length can be stored, up to the implementation limits. A column of this kind will not coerce
input values to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce
input values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer
precision. Wefind thisabit useless. If you're concerned about portability, always specify the precision
and scale explicitly.)

Note

The maximum precision that can be explicitly specified in a numer i ¢ type declaration is
1000. An unconstrained numnrer i ¢ column is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left
of the decimal point exceeds the declared precision minus the declared scale, an error is raised. For
example, a column declared as

NUMERI C(3, 1)
will round values to 1 decimal place and can store values between -99.9 and 99.9, inclusive.

Beginning in PostgreSQL 15, it isallowed to declareanumer i ¢ column with anegative scale. Then
values will be rounded to the left of the decimal point. The precision still represents the maximum
number of non-rounded digits. Thus, a column declared as

NUMERI C(2, - 3)

will round values to the nearest thousand and can store val ues between -99000 and 99000, inclusive.
It is also allowed to declare a scale larger than the declared precision. Such a column can only hold
fractional values, and it requires the number of zero digits just to the right of the decimal point to be
at least the declared scale minus the declared precision. For example, a column declared as

NUVERI C(3, 5)

will round values to 5 decimal places and can store values between -0.00999 and 0.00999, inclusive.

Note

PostgreSQL permits the scale in anuner i ¢ type declaration to be any value in the range
-1000 to 1000. However, the SQL standard requires the scaleto bein therange 0 to pr eci -
si on. Using scales outside that range may not be portable to other database systems.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nuneri c
type ismore akin to var char (n) thanto char (n).) The actual storage requirement is two bytes
for each group of four decimal digits, plus three to eight bytes overhead.

149

Data Types

8.1.3.

In addition to ordinary numeric values, the nuner i ¢ type has several special values:

Infinity
-Infinity
NaN

These are adapted from the IEEE 754 standard, and represent “infinity”, “ negative infinity”, and “ not-
a-number”, respectively. When writing these values as constants in an SQL command, you must put
guotes around them, for example UPDATE table SET x = '-Infinity'.Oninput, these
strings are recognized in a case-insensitive manner. The infinity values can alternatively be spelled
i nf and-i nf.

Theinfinity values behave as per mathematical expectations. For example, | nf i ni t y plusany finite
valueequalsI nfinity,asdoesInfinity plusinfinity;butlnfinity mnusinfinity
yields NaN (not anumber), because it has no well-defined interpretation. Note that an infinity can only
be stored in an unconstrained nuner i ¢ column, because it notionally exceeds any finite precision
limit.

The NaN (not a number) value is used to represent undefined calculational results. In general, any
operation withaNaNinput yieldsanother NaN. The only exception iswhen the operation's other inputs
are such that the same output would be obtained if the NaNwereto be replaced by any finite or infinite
numeric value; then, that output value is used for NaN too. (An example of this principle isthat NaN
raised to the zero power yields one.)

Note

In most implementations of the “not-a-number” concept, NaN is hot considered equal to any
other numeric value (including NaN). In order to allow nuner i ¢ valuesto be sorted and used
in tree-based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN
values.

Thetypesdeci mal and nuneri ¢ are equivaent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type roundsties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,

round(x: : numeric) AS num round,

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ e
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 | 2| 2

2.5 | 3| 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on areinexact, variable-precision numeric types. On
all currently supported platforms, these types are implementations of |IEEE Standard 754 for Binary

150

Data Types

Floating-Point Arithmetic (single and double precision, respectively), to the extent that the underlying
processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving avalue might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the nuneri c
typeinstead.

« If you want to do complicated calculations with these types for anything important, especiadly if
you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the im-
plementation carefully.

» Comparing two floating-point values for equality might not always work as expected.

On al currently supported platforms, the r eal type has a range of around 1E-37 to 1E+37 with a
precision of at least 6 decimal digits. Thedoubl e pr eci si on type has arange of around 1E-307
to 1E+308 with a precision of at least 15 digits. Values that are too large or too small will cause an
error. Rounding might take place if the precision of an input number is too high. Numbers too close
to zero that are not representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representa-
tion; the decimal value produced is closer to the true stored binary value than to any other value rep-
resentable in the same binary precision. (However, the output valueis currently never exactly midway
between two representable values, in order to avoid a widespread bug where input routines do not
properly respect the round-to-nearest-even rule.) This value will use at most 17 significant decimal
digitsfor f | oat 8 values, and at most 9 digitsfor f | oat 4 values.

Note

This shortest-precise output format is much faster to generate than the historical rounded for-
mat.

For compatibility with output generated by older versions of PostgreSQL, and to allow the output
precision to be reduced, the extra_float_digits parameter can be used to select rounded decimal output
instead. Setting a value of 0O restores the previous default of rounding the value to 6 (for f | oat 4)
or 15 (for f | oat 8) significant decimal digits. Setting a negative value reduces the number of digits
further; for example -2 would round output to 4 or 13 digits respectively.

Any value of extra float_digits greater than 0 selects the shortest-precise format.

Note

Applications that wanted precise values have historically had to set extra float_digitsto 3 to
obtain them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. When writing these values as constants in an SQL command, you must put quotes around

151

Data Types

8.1.4.

them, for example UPDATE tabl e SET x = '-Infinity'.Oninput, thesestringsare recog-
nized in a case-insensitive manner. The infinity values can alternatively be spelled i nf and - i nf .

Note

| EEE 754 specifies that NaN should not compare equal to any other floating-point value (in-
cluding NaN). In order to alow floating-point values to be sorted and used in tree-based in-
dexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL al so supports the SQL -standard notationsf | oat andf | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL ac-
ceptsfl oat (1) tofl oat (24) assdecting ther eal type, whilef| oat (25) tofl oat (53)
select doubl e preci si on. Vauesof p outside the allowed range draw an error. f | oat with no
precision specified is taken to mean doubl e pr eci si on.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column. An-
other way isto use the SQL -standard identity column feature, described at CREATE TABLE.

Thedatatypessnal | seri al ,seri al andbi gseri al arenot truetypes, but merely anotation-
al convenience for creating unique identifier columns (similar to the AUTO | NCREMENT property
supported by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

);
is equivalent to specifying:

CREATE SEQUENCE t abl enanme_col name_seq AS i nteger;
CREATE TABLE t abl enane (

col nane integer NOT NULL DEFAULT
next val ('t abl ename_col name_seq')

)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl enamne. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent
duplicate values from being inserted by accident, but this is not automatic.) Lastly, the sequence is
marked as “owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Becausesmal | seri al ,seri al andbi gseri al areimplemented using sequences, there
may be"holes" or gapsin the sequence of values which appearsin the column, even if no rows
areever deleted. A valueallocated from the sequenceis still "used up” evenif arow containing
that value is never successfully inserted into the table column. This may happen, for example,
if the inserting transaction rolls back. See next val () in Section 9.17 for details.

152

Data Types

To insert the next value of the sequenceintotheseri al column, specify that theseri al column
should be assigned its default value. This can be done either by excluding the column from the list of
columnsin the | NSERT statement, or through the use of the DEFAULT key word.

The type names seri al and seri al 4 are equivalent; both create i nt eger columns. The type
names bi gseri al andseri al 8 work the same way, except that they create abi gi nt column.
bi gseri al should be used if you anticipate the use of more than 2L identifiers over the lifetime of
the table. Thetype namessnal | seri al andseri al 2 aso work the same way, except that they
createasmal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is
dropped. Y ou can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The nboney type stores a currency amount with a fixed fractional precision; see Table 8.3. The frac-
tional precision is determined by the database's Ic_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, aswell astypical currency formatting, suchas' $1, 000. 00" . Output is
generaly in the latter form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size|Description Range

nmoney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a
database that has a different setting of | ¢_nonet ar y. To avoid problems, before restoring a dump
into a new database make sure | ¢_nonet ar y has the same or equivalent value as in the database
that was dumped.

Vaues of thenuneri c, i nt, and bi gi nt datatypes can be cast to mroney. Conversion from the
real anddoubl e preci si on datatypes can be done by castingto nuner i c first, for example:
SELECT ' 12.34'::float8::numeric::noney;

However, thisis not recommended. Floating point numbers should not be used to handle money due
to the potential for rounding errors.

A noney value can be cast to nurnrer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the noney value to
nuner i ¢ before dividing and back to noney afterwards. (The latter is preferable to avoid risking
precisionloss.) Whenanoney valueisdivided by another noney value, theresultisdoubl e pr e-
ci si on (i.e, apure number, not money); the currency units cancel each other out in the division.

8.3. Character Types

153

Data Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n),bpchar(n) fixed-length, blank-padded
bpchar variable unlimited length, blank-trimmed

t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL .

SQL definestwo primary character types. char act er varyi ng(n) andchar act er (n) ,where
n isapositive integer. Both of these types can store strings up to n characters (not bytes) inlength. An
attempt to store alonger string into a column of these types will result in an error, unless the excess
characters are al spaces, in which case the string will be truncated to the maximum length. (This
somewhat bizarre exception isrequired by the SQL standard.) However, if one explicitly castsavalue
tocharact er varying(n) orcharact er (n),thenanover-length value will be truncated to
n characters without raising an error. (This too is required by the SQL standard.) If the string to be
stored is shorter than the declared length, values of type char act er will be space-padded; values
of typechar act er varyi ng will simply store the shorter string.

In addition, PostgreSQL provides the t ext type, which stores strings of any length. Although the
t ext typeisnot in the SQL standard, severa other SQL database management systems have it as
well. t ext isPostgreSQL's native string datatype, in that most built-in functions operating on strings
are declared to take or returnt ext not char act er varyi ng. For many purposes, char act er
varyi ng acts as though it were adomain over t ext .

Thetypenamevar char isandiasfor charact er varyi ng, whilebpchar (with length spec-
ifier) and char arealiasesfor char act er . Thevar char andchar aliasesare defined inthe SQL
standard; bpchar isaPostgreSQL extension.

If specified, the length n must be greater than zero and cannot exceed 10,485,760. If char act er
varyi ng (or var char) is used without length specifier, the type accepts strings of any length. If
bpchar lacksalength specifier, it also accepts strings of any length, but trailing spaces are semanti-
caly insignificant. If char act er (or char) lacks a specifier, it isequivalenttochar act er (1) .

Valuesof typechar act er arephysicaly padded with spacesto the specified width n, and are stored
and displayed that way. However, trailing spaces are treated as semantically insignificant and disre-
garded when comparing two values of type char act er . In collations where whitespace is signifi-
cant, this behavior can produce unexpected results; for example SELECT 'a ':: CHAR(2) col -

late "C' < E a\n'::CHAR(2) returns true, even though C locale would consider a space
to be greater than a newline. Trailing spaces are removed when converting a char act er vaue to
one of the other string types. Note that trailing spaces are semantically significant in char act er

varyi ng andt ext values, and when using pattern matching, that isL1 KE and regular expressions.

Thecharactersthat can be stored in any of these datatypes are determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character
with code zero (sometimes called NUL) cannot be stored. For more information refer to Section 24.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includesthe space paddinginthe caseof char act er . Longer stringshave4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored isabout 1 GB. (The maximum valuethat will beallowed for n inthe datatype declarationisless
than that. It wouldn't be useful to change this because with multibyte character encodings the number
of characters and bytes can be quite different. If you desire to store long strings with no specific upper
limit, use t ext or character varyi ng without a length specifier, rather than making up an
arbitrary length limit.)

154

Data Types

Tip

There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length
when storing into alength-constrained column. Whilechar act er (n) has performance ad-
vantages in some other database systems, there is no such advantage in PostgreSQL; in fact
char act er (n) isusualy the slowest of the three because of its additional storage costs. In
most situationst ext or char act er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about avail able operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char _length

______ o e e e e e e e m - -

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good ");

I NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT | NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Iength(b) FROMtest2;

b | char _length
_______ o e e e e e e e m - -
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. These are not
intended for general-purpose use, only for use in the internal system catalogs. The nane typeisused
to store identifiers. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at
compiletime (and is therefore adjustable for specia uses); the default maximum length might change
inafuturerelease. Thetype" char " (notethe quotes) isdifferent fromchar (1) inthat it only uses
one byte of storage, and therefore can store only a single ASCII character. It is used in the system
catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description

"char" 1 byte single-byte internal type

155

Data Types

Name Storage Size Description

nane 64 bytes internal type for object names

8.4. Binary Data Types

8.4.1.

8.4.2.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

byt ea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
stringsin two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero
octets, and also disallow any other octet values and sequences of octet valuesthat areinvalid according
to the database's selected character set encoding. Second, operations on binary strings process the
actual bytes, whereas the processing of character strings depends on locale settings. In short, binary
strings are appropriate for storing datathat the programmer thinks of as*raw bytes’, whereas character
strings are appropriate for storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL s histori-
cal “escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT.
The input format is different from byt ea, but the provided functions and operators are mostly the
same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \ x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within adigit pair nor in the starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so itsuse is preferred.

Example:

SET bytea output = 'hex';

SELECT '\ xDEADBEEF' : : byt ea;
byt ea

\ xdeadbeef

byt ea Escape Format

The“escape” format isthe traditional PostgreSQL format for thebyt ea type. It takesthe approach of
representing abinary string asasequenceof ASCII characters, while converting those bytesthat cannot
be represented as an ASCI| character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.

156

Data Types

But in practiceit isusually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and givesthe alternative
escape sequences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet |Description Escaped Input |Example Hex Representa-
Value Representation tion
0 zero octet "\ 000 "\000'::bytea [\x00
39 single quote U oor "'''":i:bytea \ x27
'\ 047
92 backslash "\\'" or "\\"::bytea \ x5¢
"\134'
0to3land 127 |“non-printable” |'\ xxx' (octa |['\001'::bytea [\x01
to 255 octets value)

The requirement to escape non-printable octets varies depending on local e settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shownin Table 8.7, isthat thisistrue for any string
literal in an SQL command. The generic string-literal parser consumes the outermost single quotes
and reduces any pair of single quotesto one datacharacter. What the byt ea input function seesisjust
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one back-
dash. Most “ printable”’ octetsare output by their standard representation in the client character set, e.g.:

SET bytea out put = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet | Description Escaped Output |Example Output Result
Value Representation
92 backslash \\ "\134'::bytea \\

0to3land 127 |“non-printable” |\ xxx (octal val- |'\001'::bytea |\001
to 255 octets ue)

32t0126 “printable” octets |client character |'\ 176" :: bytea |~
set representation

157

Data Types

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically trans ates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations
available on these datatypes are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value Resolution
ti mestanp |8bytes both dateand [4713BC 294276 AD 1 microsecond
[(p)] time (no time
[with- Zone)
out tine
zone |
ti mestanp |8bytes both dateand [4713BC 294276 AD 1 microsecond
[(p)] time, with time
with tinme zone
zone
date 4 bytes date(notime [4713BC 5874897 AD |1day

of day)
time 8 bytes time of day (no |00:00:00 24:00:00 1 microsecond
[(p)] date)
[with-
out time
zone |
tinme 12 bytes time of day 00:00:00+1559 | 24:00:00-1559 |1 microsecond
[(p)] (no date), with
with tine time zone
zone
i nterval 16 bytes timeinterval |-178000000 178000000 1 microsecond
[fields] years years
[(p)]

Note

The SQL standard requires that writing just t i mest anp be equivalent to t i nest anp
wi t hout time zone, and PostgreSQL honorsthat behavior. t i mest anpt z isaccepted
asan abbreviationforti mestanp with tine zone;thisisaPostgreSQL extension.

time,timestanp,andi nt erval acceptanoptional precisionvaluep which specifiesthe number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR
MONTH
DAY

158

Data Types

8.5.1.

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR

DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Notethat if bothf i el ds and p are specified, thef i el ds must include SECOND, sincethe precision
applies only to the seconds.

Thetypetine with time zone isdefined by the SQL standard, but the definition exhibits prop-
erties which lead to questionable usefulness. In most cases, a combination of dat e, ti ne,ti ne-
stanp without tinme zone,andti mestanp with time zone shouldprovideacomplete
range of date/time functionality required by any application.

Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601, SQL -compati-
ble, traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date
input is ambiguous and there is support for specifying the expected ordering of these fields. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year
interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appen-
dix B for the exact parsing rules of date/time input and for the recognized text fieldsincluding months,
days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified fort i me, ti mest anp, andi nt er val types, and can range from
0to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal
value (but not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description

1999-01-08 SO 8601; January 8 in any mode (recommended format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode;
February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

159

Data Types

8.5.1.2.

Example Description

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YND mode
19990108 SO 8601; January 8, 1999 in any mode
990108 SO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

Times

Thetime-of-day typesaretine [(p)] without time zoneandtime [(p)] with
time zone.tine aoneisequivalenttoti me wi t hout time zone.

Validinput for these types consists of atime of day followed by an optional time zone. (See Table8.11
and Table8.12.) If atimezoneisspecifiedintheinputforti me wi t hout ti ne zone,itissilently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves adaylight-savingsrule, such as Amer i ca/ New_Yor k. In this case specifying the date
isrequired in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset isrecorded inthetime with tine zone vaueandisoutput as stored; it is
not adjusted to the active time zone.

Table8.11. Time Input

Example Description

04: 05: 06. 789 1SO 8601

04: 05: 06 1SO 8601

04: 05 1SO 8601

040506 1SO 8601

04: 05 AM same as 04:05; AM does not affect
value

04: 05 PM same as 16:05; input hour must be <=
12

04: 05: 06. 789-8 1SO 8601, with time zone as UTC off-
set

04: 05: 06- 08: 00 1SO 8601, with time zone as UTC off-
set

04: 05-08: 00 1SO 8601, with time zone as UTC off-
set

040506- 08 1SO 8601, with time zone as UTC off-
set

040506+0730 1SO 8601, with fractional-hour time
zone as UTC offset

040506+07: 30: 00 UTC offset specified to seconds (not
alowed in SO 8601)

04: 05: 06 PST time zone specified by abbreviation

160

Data Types

Example Description

2003-04-12 04: 05: 06 Americal/ New York time zone specified by full name
Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)
Aneri ca/ New_Yor k Full time zone name

PST8PDT POSI X-style time zone specification
-8:00: 00 UTC offset for PST

-8:00 UTC offset for PST (1SO 8601 extended format)
- 800 UTC offset for PST (1SO 8601 basic format)
-8 UTC offset for PST (1SO 8601 basic format)
zul u Military abbreviation for UTC

z Short form of zul u (also in 1SO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but thisis not the preferred ordering.) Thus:

1999- 01-08 04: 05: 06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i mestanp wi thout tine zoneandtinestanp wth
ti me zone literasby the presenceof a“+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54°

isati nestanp wi thout tine zone,while

TI MESTAMP ' 2004- 10- 19 10: 23: 54+02'

isatinmestanp with time zone. PostgreSQL never examines the content of aliteral string
before determining its type, and therefore will treat both of the above asti mest anp wi t hout
ti me zone. To ensurethat aliteral istreated asti nestanp with tinme zone, giveitthe
correct explicit type:

161

Data Types

TI MESTAMP WTH TI ME ZONE ' 2004-10-19 10: 23: 54+02'

In avalue that has been determined to bet i mest anp wi t hout tine zone, PostgreSQL will
silently ignoreany time zoneindication. That is, theresulting valueis derived from the date/time fields
in the input string, and is not adjusted for time zone.

Fortinmestanp with tinme zone vaues, aninput string that includes an explicit time zone
will be converted to UTC (Universal Coordinated Time) using the appropriate offset for that time
zone. If no time zone is stated in the input string, then it is assumed to be in the time zone indicated
by the system's TimeZone parameter, and is converted to UTC using the offset for thet i nezone
zone. In either case, the value is stored internally as UTC, and the originally stated or assumed time
zone is not retained.

Whenatinmestanp with tine zone vaueisoutput, it isaways converted from UTC to the
current t i mezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changet i mezone or usethe AT TI ME ZONE construct (see Section 9.9.4).

Conversionshetweent i mest anp wi t hout time zoneandti nestanp with ti ne zone
normally assume that thet i mest anp wi t hout tinme zone value should be taken or given as
ti mezone locd time. A different time zone can be specified for the conversion using AT TI MVE
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several specia date/time input values for convenience, as shown in Table 8.13.
Thevaluesinfinity and -i nfinity are specialy represented inside the system and will be
displayed unchanged; but the others are simply notational shorthandsthat will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used
as constants in SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity dat e, ti nest anp |ater than all other time stamps

-infinity dat e, ti nest anp earlier than all other time
stamps

now date,tine,tinestanp current transaction's start time

t oday dat e, ti nest anp midnight (00: 00) today

t onor r ow dat e, ti nest anp midnight (00: 00) tomorrow

yest er day dat e, ti nest anp midnight (00: 00) yesterday

all balls time 00:00:00.00 UTC

Thefollowing SQL-compatible functions can also be used to obtain the current time value for the cor-
responding datatype: CURRENT _DATE, CURRENT _TI ME, CURRENT _TI MESTAMP, LOCALTI IVE,
LOCALTI MESTAMP. (See Section 9.9.5.) Note that these are SQL functions and are not recognized
in data input strings.

Caution

While the input strings now, t oday, t onor r ow, and yest er day arefineto usein inter-
active SQL commands, they can have surprising behavior when the command is saved to be
executed later, for example in prepared statements, views, and function definitions. The string

162

Data Types

can be converted to a specific time value that continues to be used long after it becomes stale.
Use one of the SQL functions instead in such contexts. For example, CURRENT _DATE + 1
issaferthan' t onorrow : : date.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles 1SO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the 1SO 8601 format. The name of the “SQL" output format is a historical
accident.) Table 8.14 shows exampl es of each output style. The output of thedat e andt i e typesis
generaly only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only valuesin 1SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example
| SO ISO 8601, SQL stan- |1997-12-17 07: 37: 16-08

dard
S traditional style 12/ 17/ 1997 07:37:16.00 PST
Post gres origina style Wed Dec 17 07:37:16 1997 PST
Ger man regional style 17.12.1997 07:37:16.00 PST

Note

SO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This
isfor readability and for consistency with RFC 3339' aswell as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat estyl e Setting |Input Ordering Example Output

SQ., Dwy day/nmont hlyear 17/ 12/ 1997 15:37:16.00 CET
SQL, MY nont h/day/year 12/ 17/ 1997 07:37:16.00 PST
Post gres, DMWY day/nmont h/year Wed 17 Dec 07:37:16 1997 PST

In the SO style, the time zone is always shown as a signed numeric offset from UTC, with positive
sign used for zones east of Greenwich. The offset will be shown ashh (hoursonly) if it isan integral
number of hours, elseashh:mmif itisanintegral number of minutes, elseashh:mmss. (Thethird case
is not possible with any modern time zone standard, but it can appear when working with timestamps
that predate the adoption of standardized time zones.) In the other date styles, the time zone is shown
as an alphabetic abbreviation if oneisin common use in the current zone. Otherwise it appears as a
signed numeric offset in 1SO 8601 basic format (hh or hhnm).

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gr esql . conf configuration file, or the PGDATESTYLE environment vari-
able on the server or client.

L hitps://datatracker.ietf.org/doc/ntml/rfc3339

163

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Data Types

8.5.3.

Theformatting functiont o_char (see Section 9.8) isalso available asamore flexible way to format
date/time output.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavorsto be compatiblewith the SQL standard definitionsfor typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

 Although the dat e type cannot have an associated time zone, thet i me type can. Time zonesin
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

» Thedefault time zoneis specified as a constant numeric offset from UTC. It isthereforeimpossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using thetypetime with ti me zone (though
it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example Amer i ca/ New_Yor k. The recognized time zone names are
listedinthepg_ti nezone_names view (see Section 54.32). PostgreSQL uses the widely-used
IANA time zone data for this purpose, so the same time zone names are aso recognized by other
software.

» A time zone abbreviation, for example PST. Such a specification merely defines a particul ar offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules aswell. The recognized abbreviationsare listed inthepg_t i mezone_abbr evs view (see
Section 54.31). Y ou cannot set the configuration parameters TimeZone or log_timezone to atime
zone abbreviation, but you can use abbreviations in date/time input values and with the AT TI ME
ZONE operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, thisisthe difference between abbreviations and full names:. abbreviations represent aspecific
offset from UTC, whereas many of thefull namesimply alocal daylight-savingstimerule, and so have
two possible UTC offsets. Asan example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents
noon local timein New Y ork, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST
specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savingswas nominally
in effect on that date.

To complicate matters, somejurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MBK has meant UTC+3 in some years and
UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily
the same aslocal civil time on that date.

164

Data Types

8.5.4.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from con-
figuration files stored under . . . / share/ti nezone/ and.../share/tinezonesets/ of
the installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file post gr esql . conf, or in any of the
other standard ways described in Chapter 20. There are also some special ways to set it:

» The SQL command SET TI ME ZONE sets the time zone for the session. Thisis an aternative
spelling of SET TI MEZONE TOwith a more SQL-spec-compatible syntax.

» The PGTZ environment variable is used by libpg clientsto send a SET TI ME ZONE command
to the server upon connection.

Interval Input

i nt erval valuescan bewritten using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

wherequant i ty isanumber (possibly signed); uni t ism crosecond, m | |i second, sec-
ond, m nut e, hour , day, week, nont h,year ,decade,century, m | | enni um or abbrevi-
ations or plurals of these units; di r ect i on can beago or empty. The at sign (@ is optional noise.
The amounts of the different units areimplicitly added with appropriate sign accounting. ago negates
all thefields. This syntax isalso used for interval output, if IntervalStyleis set to post gres_ver -
bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example," 1 12:59: 10" isreadthesameas’' 1 day 12 hours 59 min 10 sec'.Also,
a combination of years and months can be specified with a dash; for example' 200- 10" isread the
sameas' 200 years 10 nont hs' . (These shorter formsarein fact the only ones allowed by the
SQL standard, and are used for output when | nt er val St yl e issettosql _st andard.)

Interval values can also be written as 1SO 8601 time intervals, using either the “format with designa-
tors’ of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with aP, and may includeaT that introducesthe time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
it isbefore or after T.

Table 8.16. 1SO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)

Weeks

Days

Hours

Minutes (in the time part)

nlz[z[olslz]<

Seconds

165

Data Types

In the alternative format:

P [years-nonths-days] [T hours:ninutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to 1SO 8601 dates.

When writing an interval constant with af i el ds specification, or when assigning a string to an in-
terval columnthat wasdefined withaf i el ds specification, theinterpretation of unmarked quantities
dependsonthefi el ds. For examplel NTERVAL ' 1' YEARisread as1 year, whereas| NTER-
VAL ' 1' means1second. Also, field values“totheright” of theleast significant field allowed by the
fi el ds specification aresilently discarded. For example, writingl NTERVAL ' 1 day 2: 03: 04'
HOUR TO M NUTE resultsin dropping the secondsfield, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign appliesto all fields; for examplethe negativesignintheinterval literal ' - 1 2: 03: 04'
appliesto both the days and hour/minute/second parts. PostgreSQL allowsthe fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that
the hour/minute/second part is considered positive in this example. If | nt erval Styl e is set to
sqgl _standar d then aleading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's
recommended to attach an explicit sign to each field if any field is negative.

Internally, i nt er val values are stored as three integral fields: months, days, and microseconds.
Thesefields are kept separate because the number of daysin amonth varies, whileaday can have 23 or
25 hoursif adaylight savingstimetransition isinvolved. Aninterval input string that uses other units
isnormalized into this format, and then reconstructed in a standardized way for output, for example:

SELECT ' 2 years 15 nonths 100 weeks 99 hours 123456789
mlliseconds'::interval;
i nt erval

3 years 3 nons 700 days 133:17:36.789

Here weeks, which are understood as “7 days’, have been kept separate, while the smaller and larger
time units were combined and normalized.

Input field values can have fractional parts, for example' 1. 5 weeks' or' 01: 02: 03. 45' . How-
ever, because i nt er val internally stores only integral fields, fractional values must be converted
into smaller units. Fractional parts of units greater than months are rounded to be an integer number
of months,eg.' 1.5 years' becomes' 1 year 6 nons' . Fractiona parts of weeks and days
are computed to be an integer number of days and microseconds, assuming 30 days per month and
24 hours per day, eg.,' 1. 75 nont hs' becomesl non 22 days 12: 00: 00. Only seconds
will ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 nonths 3 days 4 hours 5 |Traditiona Postgresformat: 1 year 2 months 3

m nutes 6 seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4HS5MES SO 8601 “format with designators’: same

meaning as above

166

Data Types

8.5.5.

Example Description
PO001- 02- 03T04: 05: 06 SO 8601 “alternative format” : same meaning as
above

Interval Output

As previoudly explained, PostgreSQL storesi nt er val values as months, days, and microseconds.
For output, the months field is converted to years and months by dividing by 12. The days field is
shown as-is. The microseconds field is converted to hours, minutes, seconds, and fractional seconds.
Thus months, minutes, and seconds will never be shown as exceeding the ranges 0-11, 0-59, and 0—
59 respectively, while the displayed years, days, and hours fields can be quite large. (Thej usti -

fy days andjustify hours functions can be used if it is desirable to transpose large days or
hours values into the next higher field.)

The output format of the interval type can be set to one of the four stylessql _st andar d, post -
gres, postgres_verbose, ori so_8601, using the command SET i nterval styl e. The
default isthe post gr es format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for
interval literal strings, if theinterval value meetsthe standard's restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output |ooks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to
8.4 when the Dat eSt y| e parameter was set to non-1 SO output.

Theoutput of thei so_8601 style matchesthe “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval

sql _standard 1-2 34:05:06 -1-2 +3-4:05:06

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3
days -04:05:06

post gres_verbose |@ 1 year 2 mons @ 3 days4 hours5 @ 1year 2 mons-3

mins 6 secs days 4 hours 5 mins 6

Secs ago

i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3D
T-4H-5M-6S

8.6. Boolean Type

PostgreSQL providesthe standard SQL typebool ean; see Table 8.19. Thebool ean type can have
several states: “true”, “false”, and athird state, “ unknown”, which isrepresented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queriesby the SQL key words TRUE, FAL SE, and NULL.

167

Data Types

Thedatatypeinput function for typebool ean acceptsthese string representationsfor the“true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace
isignored, and case does not matter.

The datatype output function for typebool ean alwaysemitseithert or f , asshownin Example 8.2.

Example 8.2. Using thebool ean Type

CREATE TABLE testl (a boolean, b text);

| NSERT | NTO test1l VALUES (TRUE, 'sic est');
I NSERT | NTO test1l VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean
constants in SQL queries. But you can also use the string representations by following the generic
string-literal constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but this
isnot so for NULL because that can have any type. So in some contexts you might have to cast NULL
tobool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a
string-literal Boolean value in contexts where the parser can deduce that the literal must be of type
bool ean.

8.7. Enumerated Types

8.7.1.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enumtypes supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

CREATE TYPE nmpod AS ENUM ('sad', 'ok', 'happy');

168

Data Types

8.7.2.

8.7.3.

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npbod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nood nood
)
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
nane | current_nood

______ o,
Moe | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

I NSERT | NTO person VALUES ('Curly', 'ok');

SELECT * FROM person WHERE current_nood > 'sad';
name | current_nood

SELECT * FROM person WHERE current _nood > 'sad' ORDER BY
current _nood;
name | current_nood

Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM per son

WHERE current_mood = (SELECT M N(current _nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger,

happi ness happi ness

)

169

Data Types

I NSERT | NTO hol i days(num weeks, happi ness) VALUES (4, ' happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, holidays. num weeks FROM person, holidays
WHERE per son. current _nood = hol i days. happi ness;
ERROR: operator does not exist: nopod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person. nanme, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

8.7.4. Implementation Details

Enum labels are case sensitive, so' happy' isnotthesameas' HAPPY' . White space in the labels
issignificant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual 1abel islimited by
the NAMEDATAL EN setting compiled into PostgreSQL ; in standard builds this means at most 63 bytes.

Thetrandations from internal enum valuesto textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric datatypes represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL .

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane xy)

line 24 bytes Infiniteline {A,B,C}

| seg 32 bytes Finite line segment (x1,y1),(x2,y2))

box 32 bytes Rectangular box (x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to polygon) ((x1y1),...)

pat h 16+16n bytes Open path [(x1,y1),..]

pol ygon 40+16n bytes Polygon (similar to closed path) (x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

170

Data Types

8.8.1.

8.8.2.

8.8.3.

8.8.4.

Inall thesetypes, theindividual coordinatesare stored asdoubl e preci si on (f | oat 8) numbers.

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Pointsarethefundamental two-dimensional building block for geometrictypes. Vauesof typepoi nt
are specified using either of the following syntaxes:

(x,y)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C= 0, where A and B are not both zero. Values
of typel i ne areinput and output in the following form:

{ A B C}

Alternatively, any of the following forms can be used for input:

[(x1, yl) , (x2, y2)]
((x1,yl), (x2,y2))
(x1, yl) , (x2,y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) aretwo different points on theline.

Line Segments

Line segments are represented by pairs of pointsthat are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[(x1, yl) , (x2, y2)]
((x1, y1l) , (x2,y2))
(x1,yl) ., (x2,y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) arethe end points of the line segment.

Line segments are output using the first syntax.

Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, yl), (x2,vy2))
(x1, yl) , (x2,vy2)
x1, yl X2, y2

171

Data Types

8.8.5.

8.8.6.

8.8.7.

where (x1, y1) and (x2, y2) areany two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower |eft corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin
thelist are considered not connected, or closed, wherethefirst and last pointsare considered connected.

Values of type pat h are specified using any of the following syntaxes:

[(x2, y1), ..., (xn, yn)]
((xx, vy1), ... , (xn, yn))
(x2, y1), ..., (xn, yn)

(x1, y1 y e Xn , yn)
x1, yl y e Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, asin the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar
to closed paths; the essential semantic difference is that a polygon is considered to include the area
within it, while a path is not.

An important implementation difference between polygons and paths is that the stored representation
of a polygon includes its smallest bounding box. This speeds up certain search operations, athough
computing the bounding box adds overhead while constructing new polygons.

Vaues of type pol ygon are specified using any of the following syntaxes:

((x¥1,vy1l), ... , (xn, yn))
(x1, vy1), ..., (Xxn, yn)
(x1, y1l s e Xn , yn)
x1, vyl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

Circles

Circles are represented by a center point and radius. Vaues of typeci r cl e are specified using any
of the following syntaxes:

~ A
—~ A~~~
X X X X
<K K
— — —
_~ = = =

172

Data Types

where (X, y) isthe center point and r istheradius of thecircle.

Circles are output using the first syntax.

8.9. Network Address Types

8.9.1.

8.9.2.

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sorting i net or ci dr datatypes, |Pv4 addresses will always sort before |Pv6 addresses, in-
cluding | Pv4 addresses encapsul ated or mapped to | Pv6 addresses, such as::10.2.3.4 or ::ffff:10.4.3.2.

| net

Thei net typeholdsanIPv4 or IPv6 host address, and optionally its subnet, all in onefield. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is | Pv4, then the val ue does not indicate a subnet, only asingle host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should usethe ci dr typerather thani net .

The input format for thistypeisaddr ess/ y where addr ess isan IPv4 or IPv6 addressand y is
the number of bitsin the netmask. If the/ y portion is omitted, the netmask is taken to be 32 for |Pv4
or 128 for IPv6, so the value represents just a single host. On display, the / y portion is suppressed
if the netmask specifies asingle host.

ci dr

Theci dr typeholdsan IPv4 or IPv6 network specification. Input and output formatsfollow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/ y where
addr ess isthe network’s lowest address represented as an | Pv4 or IPv6 address, and y isthe number
of bitsinthe netmask. If y isomitted, it is cal culated using assumptions from the ol der classful network
numbering system, except it will be at least large enough to include all of the octets written in the
input. It isan error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table8.22. ci dr Type Input Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

173

Data Types

f.fe22:d1f1/128

f.fe22:d1f1/128

ci dr Input ci dr Output abbrev(cidr)
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

101 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:48:3:ba/64
2001:4f8:3:ba: 2€0:81f- 2001:4f8:3:ba: 2€0:81f- 2001:4f8:3:ba: 2€0:81f-

f:fe22:d1f1/128

ffff:1.2.3.0/120

ffff:1.2.3.0/120

+ffff:1.2.3/120

+ffff:1.2.3.0/128

+ffff:1.2.3.0/128

+ffff:1.2.3.0/128

8.9.3.1 net vs.ci dr

Theessential differencebetweeni net andci dr datatypesisthati net acceptsvaueswith nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid
fori net but notfor ci dr.

Tip
If you do not like the output format for i net or ci dr values, try the functionshost ,t ext ,
and abbr ev.
8.9.4. macaddr

Themacaddr typestoresMAC addresses, known for examplefrom Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

' 08: 00: 2b: 01: 02: 03’
' 08- 00- 2b- 01- 02- 03’
' 08002b: 010203

' 08002b- 010203

' 0800. 2b01. 0203

' 0800- 2b01- 0203

' 08002b010203"

These examplesall specify the same address. Upper and lower caseisaccepted for thedigitsa through
f . Output is alwaysin the first of the forms shown.

|EEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as used with bit-reversed, M SB-first nota-
tion, so that 08-00-2b-01-02-03 = 10:00:D4:80:40:CO0. This convention is widely ignored nowadays,
and it is relevant only for obsolete network protocols (such as Token Ring). PostgreSQL makes no
provisions for bit reversal; all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. nacaddr 8

174

Data Types

8.10.

The nacaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet
card hardware addresses (although MAC addresses are used for other purposes as well). This type
can accept both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC
addresses given in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set
to FF and FE, respectively. Note that 1Pv6 uses a modified EUI-64 format where the 7th bit should
be set to one after the conversion from EUI-48. The function macaddr 8_set 7bi t is provided to
make this change. Generally speaking, any input which is comprised of pairs of hex digits (on byte
boundaries), optionally separated consistently by oneof ' : ' ," -' or'." ,isaccepted. The number
of hex digits must be either 16 (8 bytes) or 12 (6 bytes). Leading and trailing whitespace is ignored.
The following are examples of input formats that are accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05’
' 08- 00- 2b- 01- 02- 03- 04- 05
' 08002b: 0102030405

' 08002b- 0102030405

' 0800. 2b01. 0203. 0405'

' 0800- 2b01- 0203- 0405'

' 08002b01: 02030405

' 08002b0102030405

These examplesall specify the same address. Upper and lower caseisaccepted for thedigitsa through
f . Output is always in the first of the forms shown.

Thelast six input formats shown above are not part of any standard.

To convert atraditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be in-
cluded as the host portion of an |Pv6 address, use macaddr 8_set 7bi t as shown:

SELECT nacaddr 8 set 7bi t (' 08: 00: 2b: 01: 02: 03') ;

nmacaddr 8_set 7bi t

Oa: 00: 2b: ff:fe: 01: 02: 03
(1 row

Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bittypes: bi t (n) andbi t varyi ng(n),wheren isapositive integer.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bi t varyi ng datais of variable length up to the maximum length n; longer strings will
be rejected. Writing bi t without alength is equivalent to bi t (1) , whilebi t varyi ng without
alength specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t (n) , it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts abit-string
valuetobi t varyi ng(n),itwill betruncated on theright if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

175

Data Types

8.11

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING5));
| NSERT | NTO test VALUES (B 101', B 00');
| NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type bit(3)

I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM t est;

a | b
_____ [S,
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on
the length of the string (but long values may be compressed or moved out-of-line, as explained in
Section 8.3 for character strings).

Text Search Types

PostgreSQL provides two datatypesthat are designed to support full text search, which isthe activity
of searching through a collection of natural-language documents to locate those that best match a
guery. Thet svect or typerepresentsadocument in aform optimized for text search; thet squery
type similarly represents atext query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1.t svect or

A tsvector vaueisasorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elim-
ination are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent |exemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exene ' ' contains spaces$$::tsvector;
t svect or

'contains' 'lexene' 'spaces' 'the'

(Weusedollar-quoted string literalsin this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backsl ashes must be doubled:

SELECT $$the |l exene 'Joe''s' contains a quote$$::tsvector;
t svect or

'contains' 'lexene' 'quote' 'the'

176

Data Types

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat: 7 and: 8 ate: 9 a: 10
fat:11 rat:12'::tsvector;
t svect or

'a':1,6,10 '"and':8 '"ate':9 'cat':3 'fat':2,11 '"mat':7 'on':5
‘rat':12 'sat':4

A position normally indicates the source word's | ocation in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with aweight, which can be A, B, C, or D. Disthe
default and hence is not shown on output:

SELECT ' a: 1A fat:2B,4C cat: 5D ::tsvector;
t svect or

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It isimportant to understand that thet svect or typeitself doesnot perform any word normalization;
it assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized,
butt svect or doesn't care. Raw document text should usually be passed throught o_t svect or
to normalize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

At squery vauestores|lexemesthat areto be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and! (NOT), aswell as the phrase search operator <- > (FOLLOWED
BY). Thereisaso avariant <N> of the FOLLOWED BY operator, where Nisan integer constant that
specifies the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. |nthe absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding
the least tightly.

177

Data Types

Here are some examples:

SELECT 'fat & rat'::tsquery;
t squery

SELECT 'fat & (rat | cat)'::tsquery;
t squery

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

Optionaly, lexemesin at squery can be labeled with one or more weight letters, which restricts
them to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
t squery

"fat': AB & 'cat'

Also, lexemesinat squery can belabeled with * to specify prefix matching:

SELECT ' super:*'::tsquery;
t squery

This query will match any word inat svect or that begins with “super”.

Quotingrulesfor lexemesarethe sameasdescribed previously for lexemesint svect or ; and, aswith
t svect or, any required normalization of words must be done before converting to the t squery
type. Thet o_t squer y function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Note that t o_t squery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector('postgraduate’) @to_tsquery('postgres:*');
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

178

Data Types

'postgradu’':1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

8.12. UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122°,1S0/
|EC 9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique
identifier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm
chosen to make it very unlikely that the same identifier will be generated by anyone elsein the known
universe using the same algorithm. Therefore, for distributed systems, theseidentifiers provide abetter
uni queness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically agroup of 8 digitsfollowed by three groups of 4 digitsfollowed by agroup of 12
digits, for atotal of 32 digits representing the 128 bits. An example of aUUID inthisstandard formis:

a0eebc99- 9c0Ob- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following aternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AOEEBC99- 9C0OB- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380al11}
aleebc999cOb4ef 8bb6d6bb9bd380all

alee- bc99- 9cOb- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380a11}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

8.13. XML Type

The xm datatype can be used to store XML data. Its advantage over storing XML datain at ext
field isthat it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.15. Use of this data type requiresthe installation to have been
built withconfi gure --with-1ibxnl.

Thexmn type can store well-formed “documents”, as defined by the XML standard, as well as“ con-
tent” fragments, which are defined by reference to the more permissive “document node’® of the
XQuery and XPath data model. Roughly, this means that content fragments can have more than one
top-level element or character node. The expression xm val ue 1'S DOCUMENT can be used to
evaluate whether a particular xm valueisafull document or only a content fragment.

Limits and compatibility notes for the xm data type can be found in Section D.3.

8.13.1. Creating XML Values

To produce avalue of type xm from character data, use the function xm par se:

2 https://datatracker.ietf.org/doc/html/rfc4122
3 https://www.w3.0rg/ TR/2010/REC-xpath-datamodel -20101214/#DocumentNode

179

https://datatracker.ietf.org/doc/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://datatracker.ietf.org/doc/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

XMLPARSE ({ DOCUMENT | CONTENT } val ue)

Examples:

XMLPARSE (DOCUMENT ' <?xm version="1. 0" ?><book><tit| e>Manual </
titl e><chapter>...</chapter></book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

Whilethisisthe only way to convert character stringsinto XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <f oo>bar </ f 00>'
' <f oo>bar </ foo>"::xn

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when
theinput value specifiesaDTD. Thereisalso currently no built-in support for validating against other
XML schemalanguages such as XML Schema.

Theinverse operation, producing a character string value from xm , usesthe functionxni seri al -
i ze:

XMLSERI ALI ZE ({ DOCUMENT | CONTENT } value AS type [[NO]
| NDENT])

t ype canbechar act er,charact er varyi ng,ort ext (oranaliasfor oneof those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types,
but PostgreSQL also allows you to simply cast the value.

The | NDENT option causes the result to be pretty-printed, while NO | NDENT (which is the default)
just emits the original input string. Casting to a character type likewise produces the original string.

When a character string valueis cast to or from type xm without going through XMLPARSE or XM
LSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTI ON { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xml option TO { DOCUVMENT | CONTENT };
The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the
XML data passed through them. When using the text mode to pass queries to the server and query
results to the client (which is the norma mode), PostgreSQL converts all character data passed be-
tween the client and the server and vice versa to the character encoding of the respective end; see
Section 24.3. Thisincludes string representations of XML values, such asin the above examples. This
would ordinarily mean that encoding declarations contained in XML data can become invalid as the
character datais converted to other encodings while traveling between client and server, because the
embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to thexm type areignored, and content is assumed

180

Data Types

to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm will not have an encoding
declaration, and clients should assume all dataisin the current client encoding.

When using binary mode to pass query parametersto the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needlessto say, processing XML data with PostgreSQL will be less error-prone and more efficient if
the XML data encoding, client encoding, and server encoding are the same. Since XML dataisinter-
nally processed in UTF-8, computations will be most efficient if the server encoding isalso UTF-8.

Caution

Some XML -related functionsmay not work at all on non-ASCI| datawhen the server encoding
isnot UTF-8. Thisisknown to be anissuefor xm t abl e() and xpat h() in particular.

8.13.3. Accessing XML Values

The xm datatype is unusual in that it does not provide any comparison operators. This is because
thereisno well-defined and universally useful comparison algorithm for XML data. One consequence
of thisis that you cannot retrieve rows by comparing an xm column against a search value. XML
values should therefore typically be accompanied by a separate key field such asan ID. An aternative
solution for comparing XML vauesisto convert them to character stringsfirst, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm data type, it is not possible to create an index
directly on a column of thistype. If speedy searchesin XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath ex-
pression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of
XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159%,
Such data can also be stored ast ext , but the JSON data types have the advantage of enforcing that
each stored valueisvalid according to the JSON rules. There are al so assorted JSON-specific functions
and operators available for data stored in these data types; see Section 9.16.

8.14

PostgreSQL offerstwo types for storing JSON data: j son andj sonb. Toimplement efficient query
mechanisms for these data types, PostgreSQL also provides the j sonpat h data type described in
Section 8.14.7.

Thej son andj sonb datatypes accept almost identical sets of values as input. The major practical
differenceis one of efficiency. Thej son data type stores an exact copy of the input text, which pro-
cessing functions must reparse on each execution; whilej sonb datais stored in adecomposed binary
format that makesit dlightly slower to input due to added conversion overhead, but significantly faster

4 https://datatracker.ietf.org/doc/html/rfc7159

181

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Data Types

to process, since no reparsing is needed. j sonb also supports indexing, which can be a significant
advantage.

Becausethej son typestoresan exact copy of theinput text, it will preserve semantically-insignificant
white space between tokens, as well asthe order of keyswithin JISON objects. Also, if a JSON object
within the val ue contai nsthe same key morethan once, all the key/value pairsare kept. (The processing
functions consider the last value as the operative one.) By contrast, j sonb does not preserve white
space, does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate
keys are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON dataasj sonb, unless there are quite spe-
cialized needs, such aslegacy assumptions about ordering of object keys.

RFC 7159 specifies that JSON strings should be encoded in UTFS8. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. At-
temptsto directly include charactersthat cannot be represented in the database encoding will fail; con-
versely, characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the
input function for thej son type, Unicode escapes are allowed regardless of the database encoding,
and are checked only for syntactic correctness (that is, that four hex digits follow \ u). However,
the input function for j sonb is stricter: it disallows Unicode escapes for characters that cannot be
represented in the database encoding. The j sonb type aso rejects \ u0000 (because that cannot
be represented in PostgreSQL'st ext type), and it insists that any use of Unicode surrogate pairs to
designate characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes
are converted to the equivalent single character for storage; this includes folding surrogate pairs into
asingle character.

Note

Many of the JSON processing functions described in Section 9.16 will convert Unicode es-
capes to regular characters, and will therefore throw the same types of errors just described
evenif their inputisof typej son notj sonb. Thefact that thej son input function does not
make these checks may be considered a historical artifact, although it does allow for simple
storage (without processing) of JSON Unicode escapes in a database encoding that does not
support the represented characters.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutesvalidj sonb datathat do not apply tothej son type,
nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying data
type. Notably, j sonb will reject numbers that are outside the range of the PostgreSQL nurmeri ¢
datatype, whilej son will not. Such implementati on-defined restrictions are permitted by RFC 7159.
However, in practice such problems are far more likely to occur in other implementations, asit is
common to represent JSON's nunber primitive type as |EEE 754 double precision floating point
(which RFC 7159 explicitly anticipates and allows for). When using JSON as an interchange format
with such systems, the danger of 1osing numeric precision compared to data originally stored by Post-
greSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON prim-
itive types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL Types

JSON primitivetype |PostgreSQL type Notes

string t ext \ u0000 isdisallowed, as are Unicode escapes
representing characters not available in the data-
base encoding

182

Data Types

JSON primitivetype |PostgreSQL type Notes

nunber nuneric NaNandi nfi ni ty valuesare disallowed

bool ean bool ean Only lowercaset r ue and f al se spellingsare
accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.

Thefollowing are al validj son (or j sonb) expressions:

-- Sinple scalar/prinmtive val ue

-- Primtive values can be nunbers, quoted strings, true, false, or
nul |

SELECT '5'::json;

-- Array of zero or nore elenents (el enents need not be of sane

type)
SELECT '[1, 2, "foo", null]'::json;

-- (bject containing pairs of keys and val ues
-- Note that object keys nust always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo0": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previoudly stated, when a JSON valueisinput and then printed without any additional processing,
j son outputsthe sametext that wasinput, whilej sonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;

j son

{"bar": "baz", "balance": 7.77, "active":false}

(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

(1 row)

One semantically-insignificant detail worth notingisthatinj sonb, numberswill beprinted according
to the behavior of the underlying nuner i ¢ type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading":
1.230e-5}"::jsonb;
j son | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row

183

Data Types

However, | sonb will preserve trailing fractional zeroes, as seen in this example, even though those
are semantically insignificant for purposes such as equality checks.

For thelist of built-in functions and operators available for constructing and processing JSON val ues,
see Section 9.16.

8.14.2. Designing JSON Documents

Representing dataas JSON can be considerably more flexible than the traditional relational datamod-
el, which is compelling in environments where requirements are fluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have
a somewhat fixed structure. The structure is typically unenforced (though enforcing some business
rules declaratively is possible), but having a predictable structure makes it easier to write queries that
usefully summarize a set of “documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when
stored in atable. Although storing large documents is practicable, keep in mind that any update ac-
quires arow-level lock on the whole row. Consider limiting JSON documents to a manageable size
in order to decrease lock contention among updating transactions. Ideally, JSON documents should
each represent an atomic datum that business rules dictate cannot reasonably be further subdivided
into smaller datums that could be modified independently.

8.14.3.] sonb Containment and Existence

Testing containment is an important capability of j sonb. Thereisno parallel set of facilities for the
j son type. Containment tests whether one j sonb document has contained within it another one.
These examples return true except as noted:

-- Sinple scalar/prinmtive values contain only the identical val ue:
SELECT '"foo0"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::jsonb;

-- Oder of array elenents is not significant, so this is also
true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::]jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product": "PostgreSQ.", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within

t he

-- array on the left, even though a simlar array is nested within
it:

SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]sonb;

184

Data Types

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT ' {"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principleis that the contained object must match the containing object asto structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when
doing a containment match, and duplicate array elements are effectively considered only once.

As a specia exception to the genera principle that the structures must match, an array may contain
aprimitive value:

-- This array contains the primtive string val ue:

SELECT '["foo0", "bar"]'::jsonb @ '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported
her e:

SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb aso has an existence operator, which is a variation on the theme of containment: it tests
whether astring (given asat ext value) appears as an object key or array element at the top level of
thej sonb value. These examples return true except as noted:

-- String exists as array elenent:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo0": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:

SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with contai nment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false
-- Astring is considered to exist if it matches a prinmtive JSON
string:

SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do
not need to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. Asan example, supposethat wehaveadoc column containing objectsat thetop level,
with most objects containing t ags fields that contain arrays of sub-objects. This query finds
entriesin which sub-objectscontainingboth"t er i’ ; "pari s" and"ternt' : " f ood" ap-
pear, while ignoring any such keys outside thet ags array:

SELECT doc->'site_nane' FROM websites
WHERE doc @ '{"tags":[{"term':"paris"}, {"term':"food"}]}";

185

Data Types

One could accomplish the same thing with, say,

SELECT doc->'site_nane' FROM websites
WHERE doc->'tags' @ '[{"ternt:"paris"}, {"ternt:"food"}]";

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.16.

8.14.4.] sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large
number of j sonb documents (datums). Two GIN “operator classes’ are provided, offering different
performance and flexibility trade-offs.

The default GIN operator class for j sonb supports queries with the key-exists operators ?, ?| and
?&, the containment operator @, and thej sonpat h match operators @ and @@ (For details of the
semantics that these operators implement, see Table 9.46.) An example of creating an index with this
operator classis:

CREATE | NDEX idxgin ON api USING G N (jdoc);
The non-default GIN operator classj sonb_pat h_ops does not support the key-exists operators,
but it does support @, @ and @@ An example of creating an index with this operator classis:

CREATE | NDEX i dxgi np ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atable that stores JISON documents retrieved from athird-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nane": "Angela Barton",
"is_active": true,
"conpany": "Magnaf one",
"address": "178 Howard Pl ace, Qulf, Washington, 702",
"regi stered": "2009-11-07T08:53:22 +08: 00",
"latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": |
"eni ',
"al i quip",
"qui "
]
}

We store these documents in atable named api ,inaj sonb column namedj doc. If aGIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Magnaf one"

186

Data Types

SELECT j doc->'guid', jdoc-> nane' FROM api WHERE j doc @
"{"company": "Magnafone"}";

However, theindex could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed columnj doc:

-- Find docunents in which the key "tags" contains key or array
el erent "qui"

SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc -> 'tags' ?
‘qui’;

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular itemswithinthe "t ags" key is common, defining an index like this may be worthwhile:

CREATE | NDEX i dxgi ntags ON api USING AN ((jdoc -> 'tags'));

Now, the WHERE clausej doc -> 'tags' ? 'qui' will berecognized asan application of the
indexable operator ? to theindexed expressionj doc -> 't ags' .(Moreinformation on expression
indexes can be found in Section 11.7.)

Another approach to querying isto exploit containment, for example:

-- Find docunents in which the key "tags" contains array el enent
Ilqui n

SELECT jdoc->'guid', jdoc-> nane’ FROM api WHERE jdoc @ '{"tags":
[II qu| II] }I ;

A simple GIN index on the j doc column can support this query. But note that such an index will
store copies of every key and valueinthej doc column, whereas the expression index of the previous
example stores only data found under the t ags key. While the simple-index approach is far more
flexible (since it supports queries about any key), targeted expression indexes are likely to be smaller
and faster to search than a simple index.

GIN indexes also support the @ and @@operators, which perform j sonpat h matching. Examples
are

SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE j doc @
'$.tags[*] ? (@=="qui")';

SELECT j doc->'guid', jdoc->'nane' FROM api WHERE jdoc @@'$.tags[*]
== "qui"",

For these operators, a GIN index extracts clauses of theformaccessors_chai n = const ant

out of the j sonpat h pattern, and does the index search based on the keys and values mentioned

in these clauses. The accessors chain may include. key, [*] ,and[i ndex] accessors. Thej son-

b_ops operator classalso supports. * and. * * accessors, butthej sonb_pat h_ops operator class

does not.

Although thej sonb_pat h_ops operator class supports only queries with the @, @ and @@oper-
ators, it has notable performance advantages over the default operator classj sonb_ops. A j son-
b_pat h_ops index is usualy much smaller than aj sonb_ops index over the same data, and the
specificity of searches is better, particularly when queries contain keys that appear frequently in the
data. Therefore search operations typically perform better than with the default operator class.

The technical difference between aj sonb_ops and aj sonb_pat h_ops GIN index is that the
former creates independent index items for each key and value in the data, while the latter creates

187

Data Types

index items only for each value in the data. 5 Basicaly, each j sonb_pat h_ops index itemisa
hash of the value and the key(s) leading to it; for exampletoindex{"f oo": {"bar": "baz"}},
a single index item would be created incorporating all three of f 0o, bar, and baz into the hash
value. Thus a containment query looking for this structure would result in an extremely specific index
search; but there is no way at al to find out whether f 00 appears as a key. On the other hand, a
j sonb_ops index would create three index items representing f 00, bar , and baz separately; then
to do the containment query, it would look for rows containing al three of these items. While GIN
indexes can perform such an AND search fairly efficiently, it will still be less specific and slower
than the equivalent j sonb_pat h_ops search, especidly if there are a very large number of rows
containing any single one of the three index items.

A disadvantage of thej sonb_pat h_ops approach is that it produces no index entries for JSON
structures not containing any values, suchas{"a": {}}.If asearchfor documents containing such
astructure is requested, it will require a full-index scan, which is quite low. j sonb_pat h_ops is
therefore ill-suited for applications that often perform such searches.

j sonb also supports bt r ee and hash indexes. These are usualy useful only if it's important to
check equality of complete JSON documents. The bt r ee ordering for j sonb datums is seldom of
great interest, but for completenessit is:

ohject > Array > Bool ean > Nunber > String > null
Ohject with n pairs > object with n - 1 pairs

Array with n elenments > array with n - 1 elenents

with the exception that (for historical reasons) an empty top level array sortslessthan nul | . Objects
with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} >{"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

elenent-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Post-
greSQL datatype. Strings are compared using the default database collation.

8.14.5.] sonb Subscripting

The j sonb data type supports array-style subscripting expressions to extract and modify elements.
Nested values can be indicated by chaining subscripting expressions, following the same rules as the
pat h argument inthej sonb_set function. If aj sonb valueis an array, numeric subscripts start
at zero, and negative integers count backwards from the last element of the array. Slice expressions
are not supported. The result of a subscripting expression is always of the jsonb data type.

UPDATE statements may use subscripting in the SET clauseto modify j sonb values. Subscript paths
must be traversable for all affected values insofar as they exist. For instance, the path val [' @']
["b"]["'c"'] canbetraversed all theway toc if everyval ,val['a'],andval["a"]["'b"]

5 For this purpose, the term “value’ includes array elements, though JSON terminology sometimes considers array elements distinct from
values within objects.

188

Data Types

isanobject. If anyval ['a'] orval["a"]['b'] isnot defined, it will be created as an empty
object and filled as necessary. However, if any val itself or one of the intermediary valuesis defined
as a non-object such as a string, number, or j sonb nul | , traversal cannot proceed so an error is
raised and the transaction aborted.

An example of subscripting syntax:

-- Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a'];

-- Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)['a]['b']['c'];

-- Extract array el enent by index
SELECT ('[1, "2", null]'::jsonb)[1];

-- Updat e object value by key. Note the quotes around '1': the
assi gned

-- value nust be of the jsonb type as well

UPDATE tabl e_nane SET jsonb field['key'] ="'1";

-- This will raise an error if any record' s jsonb_field['a]['b']
i s sonething

-- other than an object. For exanple, the value {"a": 1} has a
nuneri c val ue

-- of the key "a'.

UPDATE tabl e_nane SET jsonb _field["a]['b"']['c'] ="'1";

-- Filter records using a WHERE cl ause with subscripting. Since the
result of

-- subscripting is jsonb, the value we conpare it against nust also
be j sonb.

-- The doubl e quotes make "value" also a valid jsonb string.

SELECT * FROM tabl e_nane WHERE jsonb_field['key'] = "'"value"';

j sonb assignment via subscripting handles afew edge cases differently fromj sonb_set . Whena
sourcej sonb valueis NULL, assignment via subscripting will proceed as if it was an empty JSON
value of the type (object or array) implied by the subscript key:

-- Where jsonb field was NULL, it is now {"a": 1}
UPDATE tabl e nane SET jsonb field['a'] ="'1";

-- Where jsonb field was NULL, it is now [1]
UPDATE tabl e nane SET jsonb field[0] ="'1";

If an index is specified for an array containing too few elements, NULL elements will be appended
until the index is reachable and the value can be set.

-- Where jsonb_field was [], it is now [null, null, 2];
-- where jsonb field was [0], it is now [0, null, 2]
UPDATE tabl e nane SET jsonb field[2] ="'2";

A j sonb value will accept assignments to nonexistent subscript paths as long as the last existing
element to be traversed is an object or array, as implied by the corresponding subscript (the element
indicated by the last subscript in the path is not traversed and may be anything). Nested array and

189

Data Types

object structures will be created, and in the former case nul | -padded, as specified by the subscript
path until the assigned value can be placed.

-- Where jsonb_field was {}, it is now {"a": [{"b": 1}]}

UPDATE tabl e_nane SET jsonb field["a][O]['b'] ="1";
-- Where jsonb _field was [], it is now [null, {"a": 1}]
UPDATE tabl e_nane SET jsonb field[1]['a'] = "'1";

8.14.6. Transforms

Additional extensions are available that implement transforms for the j sonb type for different pro-
cedura languages.

The extensions for PL/Perl are called j sonb_pl per| and j sonb_pl per| u. If you use them,
j sonb values are mapped to Perl arrays, hashes, and scalars, as appropriate.

Theextensionfor PL/Pythoniscaledj sonb_pl pyt hon3u. If youuseit,j sonb valuesaremapped
to Python dictionaries, lists, and scalars, as appropriate.

Of these extensions, j sonb_pl per | is considered “trusted”, that is, it can be installed by non-
superusers who have CREATE privilege on the current database. The rest require superuser privilege
to install.

8.14.7. jsonpath Type

The j sonpat h type implements support for the SQL/JSON path language in PostgreSQL to effi-
ciently query JSON data. It provides a binary representation of the parsed SQL/JSON path expression
that specifies the items to be retrieved by the path engine from the JSON data for further processing
with the SQL/JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the same time,
to provide a natural way of working with JSON data, SQL/JSON path syntax uses some JavaScript
conventions:

e Dot (.) isused for member access.
» Square brackets ([]) are used for array access.
» SQL/JSON arrays are O-relative, unlike regular SQL arraysthat start from 1.

Numeric literalsin SQL/JSON path expressions follow JavaScript rules, which are different from both
SQL and JSON in some minor details. For example, SQL/JSON path allows. 1 and 1. , which are
invalid in JSON. Non-decimal integer literals and underscore separators are supported, for example,
1 000_000, OXx1EEE FFFF, 00273,0b100101. In SQL/JSON path (and in JavaScript, but not
in SQL proper), there must not be an underscore separator directly after the radix prefix.

An SQL/JSON path expression istypically writtenin an SQL query asan SQL character string literal,
so it must be enclosed in single quotes, and any single quotes desired within the value must be doubled
(see Section 4.1.2.1). Some forms of path expressions require string literals within them. These em-
bedded string literalsfollow JavaScript/ECMA Script conventions:. they must be surrounded by double
guotes, and backslash escapes may be used within them to represent otherwise-hard-to-type charac-
ters. In particular, the way to write adouble quote within an embedded string literal is\ " , and to write
abackslash itself, you must write\ \ . Other special backslash sequences include those recognized in
JavaScript strings: \ b,\ f ,\ n,\ r,\ 't ,\ v for various ASCII control characters, \ x NN for acharacter
code written with only two hex digits, \ uNNNN for a Unicode character identified by its 4-hex-digit
code point, and\ u{ N. . . } for aUnicode character code point written with 1 to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:

190

Data Types

Path literals of JSON primitive types. Unicode text, numeric, true, false, or null.

Path variableslisted in Table 8.24.

» Accessor operators listed in Table 8.25.

* j sonpat h operators and methods listed in Section 9.16.2.2.

* Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

For detailson using j sonpat h expressions with SQL/JSON query functions, see Section 9.16.2.

Table8.24.j sonpat h Variables

Variable Description

$ A variable representing the JSON value being queried (the con-
text item).

$var name A named variable. Its value can be set by the parameter var s of
several JSON processing functions; see Table 9.49 for details.

@ A variable representing the result of path evaluation in filter ex-

pressions.

Table8.25.] sonpat h Accessors

Accessor Operator

Description

. key

. "$var nanme"

Member accessor that returns an object member with the speci-
fied key. If the key name matches some named variable starting
with $ or does not meet the JavaScript rules for an identifier, it
must be enclosed in double quotes to make it a string literal.

Wildcard member accessor that returns the values of all members
located at the top level of the current object.

* %

Recursive wildcard member accessor that processes all levels of
the JSON hierarchy of the current object and returns all the mem-
ber values, regardless of their nesting level. Thisis a PostgreSQL
extension of the SQL/JSON standard.

**{l evel }

**{start_level to

Like. ** but selects only the specified levels of the JSON hier-
archy. Nesting levels are specified as integers. Level zero corre-
sponds to the current object. To access the lowest nesting level,

end_| evel } you can usethel ast keyword. Thisis a PostgreSQL extension
of the SQL/JSON standard.
[subscript, ...] Array element accessor. subscri pt can begiven intwo forms:

indexorstart _index to end_i ndex. Thefirst formre-
turns asingle array element by itsindex. The second form returns
an array dlice by the range of indexes, including the elements that
correspond to the provided st art _i ndex and end_i ndex.

The specified i ndex can be an integer, aswell as an expression
returning asingle numeric value, which is automatically cast to
integer. Index zero corresponds to the first array element. You
can aso usethel ast keyword to denote the last array element,
which isuseful for handling arrays of unknown length.

[*]

Wildcard array element accessor that returns all array elements.

8.15. Arrays

191

Data Types

PostgreSQL allows columns of atableto be defined asvariable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, composite type, range type, or domain can be
created.

8.15.1. Declaration of Array Types

Toillustrate the use of array types, we create this table:

CREATE TABLE sal _enp (

nane t ext,
pay_ by quarter integer[],
schedul e text[][]

)

As shown, an array data type is hamed by appending square brackets ([]) to the data type name of
the array elements. The above command will create atable named sal _enp with a column of type
t ext (nane), aone-dimensional array of typei nt eger (pay_by_quart er), which represents
the employee's salary by quarter, and a two-dimensional array of t ext (schedul e), which repre-
sents the employee's weekly schedule.

The syntax for CREATE TABLE allows the exact size of arraysto be specified, for example:
CREATE TABLE tictactoe (

squar es i nteger[3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are al considered to be of the same type, regardless of size or number of
dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An aternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by _quart er could have been defined as:

pay_ by quarter integer ARRAY[4],

Or, if no array sizeisto be specified:

pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

Towriteanarray valueasaliteral constant, enclosethe element valueswithin curly bracesand separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can
put double quotes around any element value, and must do so if it contains commas or curly braces.
(More details appear below.) Thus, the general format of an array constant is the following:

'{ vall delimval2 delim... }'

192

Data Types

where del i misthe delimiter character for the type, as recorded in itspg_t ype entry. Among the
standard datatypes provided in the PostgreSQL distribution, all useacommay,), except for type box
which uses a semicolon (;). Each val iseither a constant of the array element type, or a subarray.
An example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'
This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value“NULL”, you must put double
guotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant isinitially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

I NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"meeting", "lunch"}, {"training", "presentation"}}");

I NSERT | NTO sal _enp
VALUES (' Carol ',
' {20000, 25000, 25000, 25000}',
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}");

Theresult of the previous two inserts looks like this:

SELECT * FROM sal _enp;
name | pay_by_quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{neeting,|unch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{meeting, | unch}}
(2 rows)

Multidimensional arrays must have matching extentsfor each dimension. A mismatch causes an error,
for example:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"nmeeting"}}");

ERROR: nmul tidi nensional arrays must have array expressions with
mat chi ng di mensi ons

The ARRAY constructor syntax can also be used:

| NSERT | NTO sal _enp
VALUES ('Bill",

193

Data Types

ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

| NSERT | NTO sal _enp
VALUES (' Carol ",
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
aresingle quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access asingle element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane FROM sal _enp WHERE pay_ by quarter[1l] <>
pay_ by quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with arr ay[1] and
endswitharray[n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_ by _quarter

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing | ower - bound: upper - bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2] [1: 1] FROM sal _enp WHERE name = 'Bill";

schedul e

{{meeting} . {training}}
(1 row

If any dimension is written as a dlice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] istreated as[1: 2] , asin thisexample:

SELECT schedul e[1: 2] [2] FROM sal _enp WHERE nanme = 'Bill";

194

Data Types

schedul e

{{meeting, lunch}, {training, presentation}}

(1 row

To avoid confusion with the non-slice case, it'sbest to use slice syntax for al dimensions, e.g., [1: 2]
[1:1],not[2] [1:1].

It is possible to omit the | ower - bound and/or upper - bound of a dlice specifier; the missing
bound is replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enp WHERE nanme = 'Bill";

schedul e

({1 unch} , {pr esent ati on})
(1 row

SELECT schedul e[:][1:1] FROM sal _enp WHERE nanme = 'Bill";

schedul e
{{meeting}, {training}}
(1 row

Anarray subscript expression will returnnull if either thearray itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedul e currently hasthe dimensions|[1: 3] [1: 2] then referencing
schedul e[3] [3] yieldsNULL. Similarly, an array reference with the wrong number of subscripts
yields anull rather than an error.

An array dlice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slicethat iscompletely outside the current array
bounds, a dlice expression yields an empty (zero-dimensional) array instead of null. (This does not
match non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps
the array bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the ar r ay_di ns function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nane = 'Carol';

array_di ns

[rarna
(1 row

array_di nms produces at ext result, which is convenient for people to read but perhaps incon-
venient for programs. Dimensions can also be retrieved with ar r ay_upper and arr ay_| ower,
which return the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

195

Data Types

array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nane = 'Carol';

array_length

(1 row

car di nal i ty returnsthetotal number of elementsin an array acrossall dimensions. It iseffectively
the number of rowsacall to unnest would yield:

SELECT cardinality(schedul e) FROM sal _enp WHERE nane = ' Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal _enp SET pay_by quarter
VWHERE nanme = 'Carol';

' {25000, 25000, 27000, 27000} '

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by_quarter
VWHERE nane = 'Carol';

ARRAY[25000, 25000, 27000, 27000]

An array can also be updated at a single element:

UPDATE sal _enp SET pay_by quarter[4] = 15000
VWHERE nanme = 'Bill";

or updated in adlice:

UPDATE sal _enp SET pay_by_quarter[1:2] = '{27000, 27000}"
VWHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only
when updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing
subscript limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For exam-
ple, if array nyar r ay currently has 4 elements, it will have six elements after an update that assigns
tormyarray|[6] ; nyarray[5] will contain null. Currently, enlargement in this fashion isonly al-
lowed for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assignto nyar r ay[- 2: 7] to create an array with subscript valuesfrom -2to 7.

New array values can aso be constructed using the concatenation operator, | | :

196

Data Types

SELECT ARRAY[1,2] || ARRAY[3,4];
?col um?

{1,234
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?col um?

{{5.6},{1,2},{3,4}}
(1 row

The concatenation operator alows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimen-
sional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dinms(1 || "[0:1]={2,3}' ::int[]);
array_dins

SELECT array_di ms(ARRAY[1,2] || 3);
array_dins

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the |eft-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns(ARRAY[1, 2] || ARRAY[3,4,5]);
array_di ns

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,.0]11);
array_dins

[us2
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensiona array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentialy an
element of the N+1-dimensional array's outer dimension. For example:

SELECT array_di ns(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_dins

[1:3][1:2]

197

Data Types

(1 row

An array can also be constructed by using the functions array_pr epend, array_append, or
array_cat . Thefirst two only support one-dimensional arrays, but ar r ay_cat supports multidi-
mensional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2, 3]);
array_prepend

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3,4]);
array_cat

(12,34
(1 row

SELECT array_cat (ARRAY[[1, 2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]]);
array_cat

{{5.6},{1, 2},{3,4}}

In simple cases, the concatenation operator discussed aboveis preferred over direct use of these func-
tions. However, because the concatenation operator is overloaded to serve al three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; ~-- the untyped literal is taken as
an array
?col um?

{1, 2,3, 4}

SELECT ARRAY[1, 2] || '7"; -- so is this one
ERROR: malforned array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated
NULL
?col um?

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been
meant

198

Data Types

array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type
is to assume it's of the same type as the operator's other input — in this case, integer array. So the
concatenation operator is presumed torepresent ar r ay_cat , notar r ay_append. When that'sthe
wrong choaice, it could be fixed by casting the constant to the array's element type; but explicit use of
array_append might be apreferable solution.

8.15.5. Searching in Arrays

Tosearch for avaluein an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay by quarter[2] = 10000 OR
pay by quarter[3] = 10000 OR
pay by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.24. The above query could be replaced by:

SELECT * FROM sal _enmp WHERE 10000 = ANY (pay_by quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, thegener at e_subscri pt s function can be used. For example:

SELECT * FROM
(SELECT pay_by quarter,
generate_subscripts(pay_by quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_ by quarter[s] = 10000;

This function is described in Table 9.66.

You can also search an array using the && operator, which checks whether the |eft operand overlaps
with the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay_ by quarter && ARRAY[10000];

This and other array operators are further described in Section 9.19. It can be accelerated by an ap-
propriate index, as described in Section 11.2.

You can also search for specific valuesin an array usingthear ray_posi ti on andarray_po-
si ti ons functions. The former returns the subscript of the first occurrence of a value in an array;
the latter returns an array with the subscripts of al occurrences of the value in the array. For example:

SELECT
array_positi on(ARRAY[' sun', ' non','tue', ' wed ,"'thu" ,"fri','sat'],
‘non');

199

Data Types

array_position

(1 row

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

Tip

Arrays are not sets; searching for specific array elements can be asign of database misdesign.
Consider using a separate table with arow for each item that would be an array element. This
will be easier to search, and is likely to scale better for alarge number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to
the 1/O conversion rulesfor the array's element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually acomma (,) but can be something else: it
is determined by thet ypdel i msetting for the array's element type. Among the standard data types
providedin the PostgreSQL distribution, all useacomma, except for typebox, which usesasemicolon
(;)- Inamultidimensiona array, each dimension (row, plane, cube, etc.) getsits own level of curly
braces, and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element valuesif they are empty strings, con-
tain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word
NULL. Double quotes and backslashes embedded in element values will be backslash-escaped. For
numeric datatypesit is safe to assume that double quotes will never appear, but for textual datatypes
one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension's lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[21:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}' ::int[] AS f1)
AS ss;

el | e2

e
1] 6

(1 row)

The array output routine will include explicit dimensionsin itsresult only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”"
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of f to suppress recognition of NULL asaNULL.

200

Data Types

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type's delimiter character), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, precede it with a backslash. Alternatively, you can avoid quotes and use back-
slash-escaping to protect all data characters that would otherwise be taken as array syntax.

Y ou can add whitespace before aleft brace or after aright brace. Y ou can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the ar-
ray-literal syntax when writing array valuesin SQL commands. In ARRAY, individual element
values are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of arow or record; it is essentialy just alist of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of atable can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory_item AS (

name t ext,
supplier_id i nteger,
price nuneric

)

Thesyntax iscomparableto CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (

item i nventory item
count i nteger

)

| NSERT | NTO on_hand VALUES (ROW' fuzzy dice', 42, 1.99), 1000);

201

Data Types

or functions:

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS
numeri c

AS ' SELECT $1.price * $2' LANGUACE SQ.;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as

the table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (

name t ext,
supplier_id i nt eger REFERENCES suppliers,
price nuneric CHECK (price > 0)

)

thenthesamei nvent ory_i t emcomposite type shown above would come into being as a byprod-
uct, and could be used just as above. Note however an important restriction of the current implemen-
tation: since no constraints are associated with a composite type, the constraints shown in the table
definition do not apply to values of the composite type outside the table. (To work around this, cre-
ate a domain over the composite type, and apply the desired constraints as CHECK constraints of the
domain.)

8.16.2. Constructing Composite Values

Towriteacompositevalueasaliteral constant, enclosethefield valueswithin parentheses and separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of acomposite constant
isthe following:

"(vall, val2 , ...)’

Anexampleis:

"("fuzzy dice",42,1.99)"

which would be a valid value of thei nvent ory_i t emtype defined above. To make a field be
NULL, write no charactersat all initspositionin thelist. For example, this constant specifiesaNULL
third field:

"("fuzzy dice",42,)"

If you want an empty string rather than NULL, write double quotes:

L} (IIII,42,)I
Herethefirst field isanon-NULL empty string, the third isNULL.

(These constants are actualy only a special case of the generic type constants discussed in Sec-
tion 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input con-
version routine. An explicit type specification might be necessary to tell which type to convert the
constant to.)

202

Data Types

The ROWexpression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We already used this method above:

RON' fuzzy dice', 42, 1.99)

ROWN "', 42, NULL)

The ROW keyword is actually optiona as long as you have more than one field in the expression,
so these can be simplified to:

('fuzzy dice', 42, 1.99)

("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access afield of a composite column, one writes a dot and the field name, much like selecting a
field from atable name. In fact, it's so much like selecting from atable name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item nane FROM on_hand WHERE item price > 9.99;

Thiswill not work sincethe namei t emistaken to be atable name, not acolumn nameof on_hand,

per SQL syntax rules. You must write it like this:

SELECT (iten).name FROM on_hand WHERE (item.price > 9.99;

or if you need to use the table name aswell (for instance in a multitable query), like this:

SELECT (on_hand.item.nane FROM on_hand WHERE (on_hand.item.price
> 9, 99;

Now the parenthesized object is correctly interpreted as areferenceto thei t emcolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to

select just one field from the result of a function that returns a composite value, you'd need to write
something like:

SELECT (nmy_func(...)).field FROM ...
Without the extra parentheses, thiswill generate a syntax error.

The special field name* means“all fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

| NSERT | NTO nytab (conplex_col) VALUES((1.1,2.2));

203

Data Types

UPDATE nytab SET conplex_col = RON1.1,2.2) WHERE .. .;
The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE nytab SET conplex _col.r = (conplex_col).r + 1 WHERE . ..;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name ap-
pearing just after SET, but we do need parentheses when referencing the same column in the expres-
sion to the right of the equal sign.

And we can specify subfields as targets for | NSERT, too:

| NSERT | NTO nytab (conplex_col.r, conplex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite typesin queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, areference to atable name (or alias) in aquery is effectively areference to the com-
posite value of the table's current row. For example, if we had atablei nvent ory_i t emas shown
above, we could write:

SELECT ¢ FROM i nventory_ itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named ¢ in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col unm_nane can be understood as
applying field selection to the composite value of the tabl€e's current row. (For efficiency reasons, it's
not actually implemented that way.)

When we write
SELECT c.* FROM inventory_item c;
then, according to the SQL standard, we should get the contents of the table expanded into separate

columns;

nane | supplier_id | price

204

Data Types

fuzzy dice | 42 | 1.99
(1 row

asif the query were

SELECT c.nanme, c.supplier_id, c.price FROMinventory itemc;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you need to write parentheses around the valuethat . * is applied to whenever it'snot a
simple table name. For example, if myf unc() isafunction returning acomposite type with columns
a, b, and ¢, then these two queries have the same result:

SELECT (nmyfunc(x)).* FROM sone_t abl e;
SELECT (nmyfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming thefirst form into the second.
So, inthisexample, myf unc() would get invoked three times per row with either syntax. If
it's an expensive function you may wish to avoid that, which you can do with a query like:

SELECT m * FROM sone_tabl e, LATERAL myfunc(x) AS m

Placing thefunctionina L ATERAL FROMitem keepsit from being invoked morethan once per
row. m * isstill expandedintom a, m b, m c, but now those variablesarejust references
to the output of the FROMitem. (The LATERAL keyword is optional here, but we show it to
clarify that the function is getting x from sone_t abl e.)

Theconposi te_val ue. * syntax results in column expansion of this kind when it appears at the
top level of a SELECT output list, a RETURNI NG list in | NSERT/UPDATE/DELETE, a VALUES
clause, or a row constructor. In al other contexts (including when nested inside one of those con-
structs), attaching . * to a composite value does not change the value, since it means “all columns’
and so the same composite value is produced again. For example, if somef unc() accepts a com-
posite-valued argument, these queries are the same:

SELECT sonmefunc(c.*) FROM inventory_ item c;
SELECT sonmefunc(c) FROMinventory_item c;

In both cases, the current row of i nvent ory_i t emis passed to the function as a single compos-
ite-valued argument. Even though . * does nothing in such cases, using it isgood style, sinceit makes
clear that a composite value is intended. In particular, the parser will consider ¢ inc. * to refer to a
table name or alias, not to a column name, so that there is no ambiguity; whereas without . * , it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if thereisa column named c.

Another example demonstrating these conceptsis that all these queries mean the same thing:

SELECT * FROM inventory item c ORDER BY c;
SELECT * FROM inventory itemc ORDER BY c.*;
SELECT * FROM inventory item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows ac-
cording to therules described in Section 9.24.6. However, if i nvent ory_i t emcontained acolumn

205

Data Types

named c, the first case would be different from the others, as it would mean to sort by that column
only. Given the column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory itemc ORDER BY RONc. name, c.supplier_id,
c.price);

SELECT * FROM inventory itemc ORDER BY (c.nanme, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting afield of acomposite value. The simpleway to explain thisisthat the notations
field(table) andtabl e.fi el d areinterchangeable. For example, these queries are equiva
lent:

SELECT c. name FROM inventory_item c WHERE c. price > 1000;
SELECT nane(c) FROM inventory_ itemc WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it
with either notation. These queries are al equivalent:

SELECT sonefunc(c) FROMinventory_item c;
SELECT sonefunc(c.*) FROMinventory_itemc;
SELECT c. somefunc FROM i nventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite typesto implement “computed fields’. An application using the last query above wouldn't
need to be directly aware that sonmef unc isn't areal column of the table.

Tip

Because of this behavior, it's unwise to give a function that takes a single composite-type
argument the same name as any of the fields of that composite type. If there is ambiguity, the
field-name interpretation will be chosen if field-name syntax is used, while the function will
be chosen if function-call syntax is used. However, PostgreSQL versions before 11 always
chose the field-name interpretation, unless the syntax of the call required it to be a function
call. One way to force the function interpretation in older versions is to schema-qualify the
function name, that is, write scherma. f unc(conposi t eval ue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the 1/0O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

Y 42)

the whitespace will beignored if the field type isinteger, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any indi-
vidual field value. You must do so if the field value would otherwise confuse the composite-value

206

Data Types

parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put adouble quote or backslash in a quoted composite field value, precede it with
a backdash. (Also, apair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to therulesfor single quotesin SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at al between the commas or parentheses) represents
aNULL. Towrite avaluethat isan empty string rather than NULL, write" " .

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you writein an SQL command will first beinterpreted asastring literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape
string syntax is used). For example, to insert at ext field containing a double quote and a
backslash in a composite value, you'd need to write:

INSERT ... VALUES ('("\"\\")');

The string-literal processor removes one level of backslashes, so that what arrives at the com-
posite-value parser lookslike ("\ "\\ ") . Inturn, the string fed to thet ext datatype'sinput
routine becomes "\ . (If we were working with a data type whose input routine also treated
backslashes specially, byt ea for example, we might need as many as eight backslashes in
the command to get one backslash into the stored composite field.) Dollar quoting (see Sec-
tion 4.1.2.4) can be used to avoid the need to double backslashes.

Tip

The ROWconstructor syntax is usually easier to work with than the composite-literal syntax
when writing composite valuesin SQL commands. In ROW individual field values are written
the same way they would be written when not members of a composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (caled the range's
subtype). For instance, ranges of t i mest anp might be used to represent the ranges of time that a
meeting room is reserved. In this case the datatypeist sr ange (short for “timestamp range”), and
ti mest anp isthe subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and be-
cause concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges
for scheduling purposesisthe clearest example; but price ranges, measurement ranges from an instru-
ment, and so forth can also be useful.

Every range type has a corresponding multirange type. A multirange is an ordered list of non-contigu-
ous, non-empty, non-null ranges. Most range operators also work on multiranges, and they have afew
functions of their own.

207

Data Types

8.17.1. Built-in Range and Multirange Types

PostgreSQL comes with the following built-in range types:

* int4range — Rangeof i nt eger,i nt4mul ti r ange — corresponding Multirange
* i nt 8range — Rangeof bi gi nt,i nt 8nul t i r ange — corresponding Multirange
e nunr ange — Range of nuneri ¢, nummul ti r ange — corresponding Multirange

* tsrange —Rangeofti mestanp wi thout tine zone,tsmultirange— correspond-
ing Multirange

e tstzrange — Rangeof ti mestanp with time zone,tstznultirange — corre-
sponding Multirange

» dat er ange — Range of dat e, dat emul t i r ange — corresponding Multirange

In addition, you can define your own range types; see CREATE TY PE for more information.

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
I NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nnent
SELECT i nt 4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Conpute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?
SELECT i senpty(nunrange(1, 5));

See Table 9.55 and Table 9.57 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

In the text form of arange, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “] ”, while an
exclusive upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions | ower _i nc and upper _i nc test the inclusivity of the lower and upper bounds of
arange value, respectively.

208

Data Types

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included intherange, e.g., (, 3] . Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound areincluded in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound asinclusive
isautomatically converted to exclusive, e.g.,[,] isconvertedto(,) . You canthink of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type's +/-infinity values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example,
with timestamp ranges, [t oday, i nfi ni ty) excludesthespecialti nest anp valuei nfinity,
while[t oday, i nfi ni ty] includeit, asdoes[t oday,) and[t oday,] .

The functions | ower _i nf and upper _i nf test for infinite lower and upper bounds of a range,
respectively.

8.17.5. Range Input/Output

The input for arange value must follow one of the following patterns:

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[1 ower - bound, upper - bound)
[1 ower - bound, upper - bound]

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is enpt y, which represents an empty range (a
range that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate
no lower bound. Likewise, upper - bound may be either a string that is valid input for the subtype,
or empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with abacksash. (Also, apair of double quotes within a double-quoted bound
value istaken to represent a double quote character, analogously to the rules for single quotesin SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data
charactersthat would otherwise be taken as range syntax. Also, to write abound value that isan empty
string, write" ", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

209

Data Types

-- includes 3, does not include 7, and does include all points in

bet ween

SELECT '[3,7)'::intd4range;

-- does not include either 3 or 7, but includes all points in
bet ween

SELECT ' (3,7)'::intd4range;

-- includes only the single point 4

SELECT '[4,4]'::intd4range;

-- includes no points (and will be nornalized to 'enpty')

SELECT '[4,4)'::intd4range;

Theinput for amultirangeis curly brackets ({ and }) containing zero or more valid ranges, separated
by commas. Whitespace is permitted around the brackets and commas. Thisisintended to be reminis-
cent of array syntax, although multiranges are much simpler: they have just one dimension and there
is no need to quote their contents. (The bounds of their ranges may be quoted as above however.)

Examples:

SELECT '{}'::int4multirange;
SELECT '{[3,7)}'::intdnultirange;
SELECT '{[3,7), [8,9)} ::intd4multirange;

8.17.6. Constructing Ranges and Multiranges

Each range type has a constructor function with the same name asthe range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclu-
sive), while the three-argument form constructs arange with bounds of the form specified by the third
argument. The third argument must be one of the strings“() ", “(]1”,“[)”, or“[]1". For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

-- inclusivity/exclusivity of bounds.

SELECT nunrange(1.0, 14.0, '(]');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]1');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange(NULL, 2.2);

Each range type also has a multirange constructor with the same name as the multirange type. The
constructor function takes zero or more arguments which are al ranges of the appropriate type. For
example:

210

Data Types

SELECT nunmmul tirange();
SELECT nunmmul tirange(nunrange(1.0, 14.0));
SELECT nunmmul tirange(nunrange(1.0, 14.0), nunrange(20.0, 25.0));

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e.
In these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it's always (or amost always) possible to identify other
element values between two given values. For example, arange over the nuner i ¢ typeis continu-
ous, asisarangeoverti mest anp. (Eventhought i mest anp haslimited precision, and so could
theoretically be treated as discrete, it's better to consider it continuous since the step size is normally
not of interest.)

Another way to think about a discrete range type isthat there isa clear idea of a“next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of arange's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4, 8] and (3, 9) dencte the same set of
values; but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of valuesin redlity.

The built-in range typesi nt 4r ange, i nt 8r ange, and dat er ange &l use a canonical form that
includes the lower bound and excludes the upper bound; that is, [) . User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtypef | oat 8:

CREATE TYPE fl oatrange AS RANGE (
subtype = fl oat 8,
subtype_diff = fl oat8m

);
SELECT '[1.234, 5.678]'::floatrange;

Because f | oat 8 has no meaningful “step”, we do not define a canonicalization function in this ex-
ample.

When you define your own range you automatically get a corresponding multirange type.

Defining your own range type aso alows you to specify a different subtype B-tree operator class or
collation to use, so asto change the sort ordering that determines which valuesfall into agiven range.

If the subtypeis considered to have discrete rather than continuous values, the CREATE TYPE com-
mand should specify acanoni cal function. The canonicalization function takes an input range val-
ue, and must return an equivalent range value that may have different bounds and formatting. The
canonical output for two ranges that represent the same set of values, for example the integer ranges
[1, 7] and[1, 8),mustbeidentical. It doesn't matter which representation you choose to be the
canonical one, so long as two equivalent values with different formattings are always mapped to the
same value with the same formatting. In addition to adjusting the inclusive/exclusive boundsformat, a

211

Data Types

canonicalization function might round off boundary values, in case the desired step sizeislarger than
what the subtype is capable of storing. For instance, arangetype over t i nest anp could be defined
to have a step size of an hour, in which case the canonicalization function would need to round off
bounds that weren't amultiple of an hour, or perhaps throw an error instead.

In addition, any range typethat ismeant to be used with GiST or SP-Gi ST indexes should define asub-
type difference, or subt ype_di f f, function. (The index will still work without subt ype_di ff,
but it islikely to be considerably less efficient than if a difference function is provided.) The subtype
difference function takes two input values of the subtype, and returns their difference (i.e., X minus
Y) represented asaf | oat 8 value. In our example above, thefunction f | oat 8mi that underliesthe
regular f | oat 8 minus operator can be used; but for any other subtype, some type conversion would
be necessary. Some creative thought about how to represent differences as numbers might be needed,
too. Tothe greatest extent possible, thesubt ype_di f f function should agree with the sort ordering
implied by the selected operator class and collation; that is, its result should be positive whenever its
first argument is greater than its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS float8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sqgl STRICT | MMUTABLE;

CREATE TYPE tinerange AS RANGE (
subtype = tine,
subtype diff = tinme_subtype diff
)

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TY PE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. GiST indexes can be also
created for table columns of multirange types. For instance, to create a GiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GIiST or SP-GiST index on ranges can accelerate queries involving these range operators. =, &&,
<@ @, <<,>>,-| -, &<,and &>. A GiST index on multiranges can accelerate queries involving the
same set of multirange operators. A GiST index on ranges and GiST index on multiranges can also
accelerate queries involving these cross-type range to multirange and multirange to range operators
correspondingly: &&, <@ @, <<, >>, - | -, &<, and &>. See Table 9.55 for more information.

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. Thereis a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering israther arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNI QUE is a natural constraint for scalar values, it is usually unsuitable for range types. In-
stead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on arange type. For example:

212

Data Types

8.18

CREATE TABLE reservation (
during tsrange,
EXCLUDE USI NG d ST (during WTH &&)

)

That constraint will prevent any overlapping values from existing in the table at the same time;

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO reservati on VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)');

ERROR: conflicting key val ue viol ates exclusi on constraint
"reservation_during_excl"

DETAIL: Key (during)=(["2010-01-01 14:45:00", "2010-01-01
15:45:00")) conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

You can usethe bt r ee_gi st extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
bt r ee_gi st isinstalled, the following constraint will reject overlapping ranges only if the meeting
room numbers are equal:

CREATE EXTENSI ON btree_gi st;
CREATE TABLE room reservation (
room t ext,
during tsrange,
EXCLUDE USING G ST (room WTH =, during WTH &&)

)

| NSERT | NTO room reservation VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

| NSERT | NTO room reservation VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');

ERROR: conflicting key val ue viol ates excl usi on constrai nt
"room reservation_roomduring_excl"

DETAIL: Key (room during)=(123A, ["2010-01-01
14:30: 00", "2010-01-01 15:30:00")) conflicts

with existing key (room during)=(123A, ["2010-01-01
14:00: 00", "2010-01-01 15:00:00")).

| NSERT | NTO room reservation VALUES
('"123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1

Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraintsthat restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

213

Data Types

8.19.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOVAI N posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);

| NSERT | NTO nyt abl e VALUES(1); -- works

| NSERT | NTO nytabl e VALUES(-1); -- fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to theunderlying type. Thus, for example, theresultof nyt abl e.id - 1is
considered to be of typei nt eger not posi nt . Wecouldwrite(nytable.id - 1):: posint

to cast the result back to posi nt , causing the domain's constraints to be rechecked. In this case, that
would result in an error if the expression had been applied to an i d value of 1. Assigning a value of
the underlying type to a field or variable of the domain type is allowed without writing an explicit
cast, but the domain's constraints will be checked.

For additional information see CREATE DOMAIN.

Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keysfor various system tables.
Type oi d represents an object identifier. There are also several alias types for oi d, each named
r egsonet hi ng. Table 8.26 shows an overview.

The oi d type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniquenessin large databases, or even in large individual tables.

The oi d type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oi d would use. The dias types alow simplified lookup of OID values for
objects. For example, to examinethe pg_at t ri but e rows related to atable myt abl e, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'nmytable'::regcl ass;

rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nane =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-
select would be needed to select theright OID if thereare multipletablesnamed nyt abl e indifferent
schemas. The r egcl ass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting atable's OID tor egcl ass
is handy for symbolic display of anumeric OID.

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifi- 564182
er

214

Data Types

Name References Description Value Example
regcl ass pg_cl ass relation name pg_type
regcol |l ation pg_col l ation collation name " pPCsI X"
regconfig pg_ts_config text search configura- |engl i sh

tion
regdi ctionary pg_ts_dict text search dictionary |si npl e
regnanespace pg_nanmespace namespace name pg_cat al og
r egoper pg_oper at or operator name +

r egoper at or

pg_oper at or

operator with argument
types

*(integer,inte-
ger) or- (NONE,

i nt eger)
regproc pg_proc function name sum
r egpr ocedur e pg_proc function with argument |sunq(i nt 4)
types
regrol e pg_aut hid role name smt hee
regtype pg_type data type name i nt eger

All of the OID dlias types for objects that are grouped by namespace accept schema-qualified names,
and will display schema-qualified names on output if the object would not be found in the current
search path without being qualified. For example, nyschena. myt abl e is acceptable input for
regcl ass (if thereis such atable). That value might be output as nyschena. myt abl e, or just
nyt abl e, depending on the current search path. Ther egpr oc and r egoper dias types will on-
ly accept input names that are unique (not overloaded), so they are of limited use; for most uses
regpr ocedur e or r egoper at or are more appropriate. For r egoper at or , unary operatorsare
identified by writing NONE for the unused operand.

Theinput functions for these types allow whitespace between tokens, and will fold upper-case letters
to lower case, except within double quotes; this is done to make the syntax rules similar to the way
object names are written in SQL. Conversely, the output functions will use double quotes if needed
to make the output be a valid SQL identifier. For example, the OID of a function named Foo (with
upper case F) taking two integer arguments could beenteredas' " Foo" (int, integer)
' :regprocedure. The output would look like" Foo" (i nt eger, i nt eger) . Both the func-
tion name and the argument type names could be schema-qualified, too.

Many built-in PostgreSQL functions accept the OID of atable, or another kind of database object, and
for convenience are declared as taking r egcl ass (or the appropriate OID alias type). This means
you do not have to look up the object's OID by hand, but can just enter its name as a string literal.
For example, thenext val (r egcl ass) function takesasequencerelation'sOID, so you could call
it like this:

nextval (' foo') operates on sequence foo
nextval (' FOO) sane as above

nextval (' "Foo"") operates on sequence Foo
next val (' myschena. f 00') operates on nyschena. f oo
nextval (' "nyschema". foo0'") sane as above

nextval (' foo') searches search path for foo

Note

When you write the argument of such a function as an unadorned literal string, it becomes
a constant of typer egcl ass (or the appropriate type). Since thisis realy just an OID, it
will track the originally identified object despite later renaming, schema reassignment, etc.
This“early binding” behavior isusually desirable for object referencesin column defaultsand

215

Data Types

views. But sometimes you might want “late binding” where the object reference is resolved
at run time. To get late-binding behavior, force the constant to be stored asat ext constant
instead of r egcl ass:

nextval (' foo' ::text) foo is | ooked up at runtine

Thet o_r egcl ass() function anditssiblings can also be used to perform run-timelookups.
See Table 9.72.

Another practical example of use of r egcl ass istolook up the OID of atablelisted inthei nf or -

mat i on_schema views, which don't supply such OlDsdirectly. One might for example wish to call
thepg_rel ati on_si ze() function, which requires the table OID. Taking the above rules into
account, the correct way to do that is

SELECT tabl e_schenmmn, table_ nane,
pg_relation_size((quote_ident(table _schema) || '.' |]
guote_ident (tabl e nane))::regcl ass)
FROM i nf or mati on_schena. t abl es
WHERE . ..

The quot e_i dent () function will take care of double-quoting the identifiers where needed. The
seemingly easier

SELECT pg_rel ation_size(tabl e_nane)
FROM i nf or mati on_schena. t abl es
VWHERE . ..

is not recommended, because it will fail for tables that are outside your search path or have names
that require quoting.

An additional property of most of the OID dlias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expres-
sionnext val (' ny_seq' ::regcl ass), PostgreSQL understandsthat the default expression de-
pends on the sequence my _seq, so the system will not let the sequence be dropped without first re-
moving the default expression. The aternative of next val (' my_seq' : : t ext) does not create
adependency. (r egr ol e is an exception to this property. Constants of this type are not allowed in
stored expressions.)

Another identifier type used by the system is xi d, or transaction (abbreviated xact) identifier. This
is the data type of the system columns xm n and xnmax. Transaction identifiers are 32-bit quantities.
In some contexts, a 64-bit variant Xi d8 is used. Unlike xi d values, xi d8 values increase strictly
monotonically and cannot be reused in the lifetime of a database cluster. See Section 74.1 for more
details.

A third identifier type used by the systemisci d, or command identifier. Thisis the data type of the
system columns cmi n and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemisti d, or tuple identifier (row identifier). Thisis the data
type of the system column ct i d. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within itstable.

(The system columns are further explained in Section 5.5.)

8.20. pg | sn Type

216

Data Types

8.21

The pg_| sn datatype can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type
of PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecima numbers of up to 8 digits each, separated by a slash; for example,
16/ B374D848. The pg_| sn type supports the standard comparison operators, like = and >. Two
L SNs can be subtracted using the - operator; the result is the number of bytes separating those write-
ahead log locations. Also the number of bytes can be added into and subtracted from LSN using the
+(pg_l sn, nuneric) and- (pg_l sn, nuneri c) operators, respectively. Note that the calcu-
lated LSN should bein the range of pg_| sn type, i.e,, between 0/ 0 and FFFFFFFF/ FFFFFFFF.

Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-typesis useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.27 lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name

Description

any

Indicates that a function accepts any input data type.

anyel enent

Indicates that a function accepts any data type (see Sec-
tion 38.2.5).

anyarray

Indicates that a function accepts any array datatype (see
Section 38.2.5).

anynonar r ay

Indicates that a function accepts any non-array datatype
(see Section 38.2.5).

anyenum Indicates that a function accepts any enum data type (see
Section 38.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data type (see
Section 38.2.5 and Section 8.17).

anymul ti range

Indicates that a function accepts any multirange data type
(see Section 38.2.5 and Section 8.17).

anyconpati bl e

Indicates that a function accepts any data type, with auto-
matic promotion of multiple arguments to a common data
type (see Section 38.2.5).

anyconpati bl earray

Indicates that a function accepts any array datatype, with
automatic promotion of multiple arguments to acommon
data type (see Section 38.2.5).

anyconpati bl enonar r ay

Indicates that a function accepts any non-array datatype,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 38.2.5).

anyconpati bl er ange

Indicates that a function accepts any range data type, with
automatic promotion of multiple arguments to acommon
data type (see Section 38.2.5 and Section 8.17).

anyconpati bl ermul ti range

Indicates that a function accepts any multirange data type,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 38.2.5 and Section 8.17).

cstring

Indicates that a function accepts or returns a null-terminat-
ed C string.

217

Data Types

Name Description

i nt ernal Indicates that a function accepts or returns a server-internal
data type.

| anguage_handl er A procedural language call handler is declared to return
| anguage_handl er.

f dw_handl er A foreign-data wrapper handler is declared to return f d-
w_handl er.

t abl e_am handl er A table access method handler isdeclared to return t a-
bl e_am handl er.

i ndex_am handl er Anindex access method handler is declared to returni n-
dex_am handl er.

t sm handl er A tablesample method handler is declared to return
tsm handl er.

record Identifies a function taking or returning an unspecified row
type.

trigger A trigger function isdeclared toreturnt ri gger .

event _trigger An event trigger function is declared to return even-
t_trigger.

pg_ddl _comand I dentifies a representation of DDL commands that is avail-
able to event triggers.

voi d Indicates that a function returns no value.

unknown | dentifies a not-yet-resolved type, e.g., of an undecorated
string literal .

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo-types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implemen-
tation languages. At present most procedural languages forbid use of a pseudo-type as an argument
type, and allow only voi d andr ecor d asaresult type (plust ri gger orevent _tri gger when
the function is used as atrigger or event trigger). Some also support polymorphic functions using the
polymorphic pseudo-types, which are shown above and discussed in detail in Section 38.2.5.

Thei nt er nal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If afunction has at least one
i nt er nal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it isimportant to follow thiscoding rule: do not create any function that isdeclared to return
i nt ernal unlessit hasat least onei nt er nal argument.

218

Chapter 9. Functions and Operators

PostgreSQL providesalarge number of functions and operatorsfor the built-in datatypes. This chapter
describes most of them, although additional special-purpose functions appear in relevant sections of
the manual. Users can also define their own functions and operators, as described in Part V. The psql
commands\ df and\ do can be usedto list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of afunction
or operator islike this:

repeat (text, integer) - text

which saysthat the function r epeat takes one text and one integer argument and returns a result of
type text. Theright arrow is aso used to indicate the result of an example, thus:

repeat (' Pg', 4) - PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

bool ean AND bool ean - bool ean
bool ean OR bool ean - bool ean
NOT bool ean - bool ean

SQL uses athree-valued logic system with true, false, and nul | , which represents “unknown”. Ob-
serve the following truth tables:

a b aANDDb aORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without
affecting the result. (However, it is not guaranteed that the left operand is evaluated before the right
operand. See Section 4.2.14 for more information about the order of evaluation of subexpressions.)

219

Functions and Operators

9.2. Comparison Functions and Operators

The usua comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description
dat at ype < dat at ype — bool ean Less than
dat at ype > dat at ype — bool ean Greater than
dat at ype <= dat at ype - bool ean Lessthan or equal to
dat at ype >=dat at ype - bool ean Greater than or equal to
dat at ype = dat at ype — bool ean Equal
dat at ype <> dat at ype — bool ean Not equal
dat at ype ! = dat at ype — bool ean Not equal
Note
<> isthe standard SQL notation for “not equal”. ! = is an alias, which is converted to <> at

do different things.

avery early stage of parsing. Hence, it is not possible to implement ! = and <> operators that

These comparison operators are available for all built-in data types that have a natural ordering, in-
cluding numeric, string, and date/time types. In addition, arrays, composite types, and ranges can be

compared if their component data types are comparable.

Itisusually possibleto comparevaluesof related datatypesaswell; for examplei nt eger >bi gi nt
will work. Some cases of this sort areimplemented directly by “cross-type” comparison operators, but
if no such operator is available, the parser will coerce the less-general type to the more-general type

and apply the latter's comparison operator.

As shown above, all comparison operators are binary operators that return values of type bool ean.
Thus, expressionslikel < 2 < 3 arenot valid (because thereisno < operator to compare aBoolean

value with 3). Use the BETWEEN predicates shown below to perform range tests.

There are al so some comparison predicates, as shown in Table 9.2. These behave much like operators,

but have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

dat at ype BETWEEN dat at ype ANDdat at ype - bool ean
Between (inclusive of the range endpoints).

2 BETWEEN 1 AND 3 -t
2 BETWEEN 3 AND 1 - f

dat at ype NOT BETWEENdat at ype ANDdat at ype — bool ean
Not between (the negation of BETVEEN).

2 NOT BETWEEN 1 AND 3 - f

220

Functions and Operators

Predicate
Description
Example(s)

dat at ype BETVWVEEN SYMMETRI Cdat at ype ANDdat at ype — bool ean
Between, after sorting the two endpoint values.

2 BETWEEN SYMMETRIC 3 AND 1 -t

dat at ype NOT BETWEEN SYMVETRI Cdat at ype ANDdat at ype — bool ean
Not between, after sorting the two endpoint values.

2 NOT BETWEEN SYMVETRIC 3 AND 1 - f

datatype | S DI STI NCT FROMdat at ype — bool ean
Not equal, treating null as a comparable value.

1 1S DI STINCT FROM NULL — t (rather than NULL)
NULL |'S DI STI NCT FROM NULL - f (rather than NULL)

datatype | S NOT DI STI NCT FROMdat at ype — bool ean
Equal, treating null as a comparable value.

1 1S NOT DI STINCT FROM NULL — f (rather than NULL)
NULL I'S NOT DI STI NCT FROM NULL - t (rather than NULL)

datatype | S NULL - bool ean
Test whether valueis null.

1.5 1S NULL - f

datatype | S NOT NULL - bool ean
Test whether value is not null.

"null* 1S NOT NULL -t

dat at ype | SNULL — bool ean
Test whether value is null (nonstandard syntax).

dat at ype NOTNULL - bool ean
Test whether value is not null (nonstandard syntax).

bool ean| S TRUE - bool ean
Test whether boolean expression yields true.

true IS TRUE - t
NULL: : bool ean | S TRUE - f (rather than NULL)

bool ean| S NOT TRUE - bool ean
Test whether boolean expression yields false or unknown.

true IS NOT TRUE - f
NULL: : bool ean 1S NOT TRUE - t (rather than NULL)

bool ean| S FALSE - bool ean
Test whether boolean expression yields false.

true I'S FALSE - f
NULL: : bool ean | S FALSE - f (rather than NULL)

bool ean| S NOT FALSE - bool ean
Test whether boolean expression yields true or unknown.

true IS NOT FALSE -t
NULL: : bool ean IS NOT FALSE - t (rather than NULL)

221

Functions and Operators

Predicate
Description
Example(s)

bool ean| S UNKNOMWN - bool ean
Test whether boolean expression yields unknown.

true I'S UNKNOM - f
NULL: : bool ean 1S UNKNOWN - t (rather than NULL)

bool ean| S NOT UNKNOWN - bool ean
Test whether boolean expression yields true or false.

true I'S NOT UNKNOWN - t
NULL: : bool ean |'S NOT UNKNOWN - f (rather than NULL)

The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETVEEEN treats the endpoint values as included in the range. BETWEEN SYMVETRI C
is like BETWEEN except there is no requirement that the argument to the left of AND be less than or
equal to the argument on theright. If it is not, those two arguments are automatically swapped, so that
anonempty range is aways implied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators,
and therefore will work for any data type(s) that can be compared.

Note

The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as alogi-
cal operator. To resolve this, only alimited set of expression types are allowed as the second
argument of a BETVEEN clause. If you need to write a more complex sub-expression in BE-
TWEEN, write parentheses around the sub-expression.

Ordinary comparison operatorsyield null (signifying “ unknown™), not true or false, when either input
isnull. For example, 7 = NULL yieldsnull, asdoes7 <> NULL.When thisbehavior isnot suitable,
usethel S [NOT] DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b
a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs
arenull it returns false, and if only one input is null it returnstrue. Similarly, | S NOT DI STI NCT
FROMisidentical to = for non-null inputs, but it returns true when both inputs are null, and false when
only oneinput is null. Thus, these predicates effectively act as though null were anormal datavalue,
rather than “unknown”.

To check whether avalueis or is not null, use the predicates:

222

Functions and Operators

expression IS NULL
expression |'S NOT NULL

or the equivalent, but nonstandard, predicates:

expressi on | SNULL
expressi on NOTNULL

Do not write expr essi on = NULL because NULL is not “equal to” NULL. (The null value repre-
sents an unknown value, and it is not known whether two unknown values are equal.)

Tip

Some applications might expect that expr essi on = NULL returnstrueif expr essi on
evaluates to the null value. It is highly recommended that these applications be modified to
comply with the SQL standard. However, if that cannot be done the transform_null_equals
configuration variable is available. If it is enabled, PostgreSQL will convert x = NULL
clausestox |'S NULL.

If the expr essi on isrow-valued, then | S NULL is true when the row expression itself is null
or when al the row's fields are null, while | S NOT NULL is true when the row expression itself
is non-null and all the row's fields are non-null. Because of this behavior, | S NULL and | S NOT
NULL do not always return inverse results for row-valued expressions; in particular, a row-valued
expression that contains both null and non-null fields will return false for both tests. In some cases,
it may be preferable to writerow 1 S DI STINCT FROM NULL orrowl S NOT DI STI NCT
FROM NULL, which will simply check whether the overall row value is null without any additional
tests on the row fields.

Boolean values can also be tested using the predicates

bool ean_expression IS TRUE

bool ean_expression |'S NOT TRUE
bool ean_expression | S FALSE

bool ean_expression IS NOT FALSE
bool ean_expression | S UNKNOAN
bool ean_expression |'S NOT UNKNOMN

These will always return true or false, never anull value, even when the operand is null. A null input
is treated as the logical value “unknown”. Noticethat | S UNKNOAN and | S NOT UNKNOWN are
effectively thesameas| S NULL and1 S NOT NULL, respectively, except that the input expression
must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num nonnul | s (VARI ADI C"any") - i nt eger
Returns the number of non-null arguments.

223

Functions and Operators

Function
Description
Example(s)

num nonnul I s(1, NULL, 2) - 2

num nul | s (VARI ADI C"any") - i nt eger
Returns the number of null arguments.

num nul I s(1, NULL, 2) -1

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsegquent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Un-
less otherwise noted, operators shown as accepting nuner i c_t ype are available for al the types
smal lint,integer,bigint,nunmeric,real,anddoubl e preci si on. Operators shown
as accepting i nt egr al _t ype are available for the types sral | i nt, i nt eger, and bi gi nt .
Except where noted, each form of an operator returns the same data type as its argument(s). Calls
involving multiple argument data types, such asi nt eger + nuneri c, are resolved by using the
type appearing later in these lists.

Table 9.4. Mathematical Operators

Operator
Description
Example(s)

nuneric_type+numeric_type - nunmeric_type
Addition

2 +3.5

+nuneri c_type - numeric_type
Unary plus (no operation)

+3.5-3.5

nuneric_type- nunmeric_type - nunmeric_type
Subtraction
2 - 3-5-1

- numeric_type - nuneric_type
Negation
- (-4) -4

nuneric_type* nunmeric_type - nunmeric_type
Multiplication
2* 3.6

nuneric_type/ numeric_type - nuneric_type
Division (for integral types, division truncates the result towards zero)

5.0 / 2 - 2.5000000000000000
5/ 252
(-5) | 25-2

nuneric_type %nuneri c_type - nuneric_type
Modulo (remainder); availablefor smal | i nt ,i nt eger, bi gi nt,and nuneri c

224

Functions and Operators

Operator
Description
Example(s)

5 %4 -1

numeri c ™ nuneric - nuneric
doubl e precision”double precision - double precision
Exponentiation
2~3-.8
Unlike typical mathematical practice, multiple uses of ~ will associate left to right by de-
fault:

27N 3" 3-512
2 ™ (3 "™ 3) -134217728

| / doubl e precision - double precision
Square root

|/ 25.0 -5

| | / doubl e precision - doubl e precision
Cube root

||/ 64.0 - 4

@nuneric_type - numeric_type
Absolute value

@-5.0-5.0

integral type&integral type - integral type
Bitwise AND
91 & 15 - 11

integral type| integral _type - integral _type
Bitwise OR
32 | 3535

integral _type#integral _type - integral _type
Bitwise exclusive OR
17 # 5 - 20

~integral _type - integral _type
Bitwise NOT
"'1 - = 2

integral type<<integer - integral type
Bitwise shift left
1 << 4,16

integral _type>>integer - integral _type
Bitwise shift right
8 > 2.2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multi-
pleformswith different argument types. Except where noted, any given form of afunction returnsthe
same data type as its argument(s); cross-type cases are resolved in the same way as explained above
for operators. Thefunctionsworkingwithdoubl e pr eci si on dataare mostly implemented ontop
of the host system's C library; accuracy and behavior in boundary cases can therefore vary depending
on the host system.

225

Functions and Operators

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (nuneric_type) - nuneric_type
Absolute value
abs(-17.4) - 17.4

cbrt (doubl e precision) - doubl e precision
Cube root

cbrt(64.0) - 4

ceil (numeric) - nuneric

ceil (doubl e precision) - doubl e precision
Nearest integer greater than or equal to argument

ceil (42.2) - 43
ceil(-42.8) - -42

ceiling(nuneric) - numeric

cei ling (doubl e precision) - doubl e precision
Nearest integer greater than or equal to argument (sameascei |)

ceiling(95.3) - 96

degrees (doubl e precision) - doubl e precision
Converts radians to degrees

degrees(0.5) - 28.64788975654116

di v (ynumeric,xnunmeric) - nuneric
Integer quotient of y/x (truncates towards zero)

div(9, 4) -2

erf (doubl e precision) - doubl e precision
Error function

erf(1.0) — 0.8427007929497149

erfc (doubl e precision) - doubl e precision
Complementary error function (1 - erf (x), without loss of precision for large inputs)

erfc(1.0) - 0.15729920705028513

exp (nuneric) - nuneric

exp (doubl e precision) - doubl e precision
Exponential (e raised to the given power)
exp(1l.0) - 2.7182818284590452

factorial (bigint) - numeric
Factorial

factorial (5) - 120

floor (numeric) - nuneric

floor (doubl e precision) - double precision
Nearest integer less than or equal to argument

floor(42.8) - 42
floor(-42.8) - -43

226

Functions and Operators

Function
Description
Example(s)

gcd (nuneric_type,numeric_type) - nuneric_type
Greatest common divisor (the largest positive number that divides both inputs with no re-

mainder); returns O if both inputs are zero; available for i nt eger, bi gi nt, and nu-
neric

gcd(1071, 462) - 21

I cm(nuneric_type,nuneric_type) - nuneric_type
Least common multiple (the smallest strictly positive number that is an integral multiple
of both inputs); returns O if either input is zero; available for i nt eger, bi gi nt, and
numeri c

| cm(1071, 462) - 23562

I n(nunmeric) - numeric

I n (doubl e precision) - doubl e precision
Natural logarithm

In(2.0) - 0.6931471805599453

| og (nuneric) - nuneric

| og (doubl e precision) - doubl e precision
Base 10 logarithm

l 0og(100) - 2

| 0g10 (numeric) - nuneric

| 0910 (doubl e precision) - doubl e precision
Base 10 logarithm (same as| 0g)

| 0g10(1000) - 3

| og (bnuneric,xnuneric) - nuneric
Logarithm of x to base b

log(2.0, 64.0) - 6.0000000000000000

m n_scal e (nuneric) - i nteger

Minimum scale (number of fractional decimal digits) needed to represent the supplied
value precisely

m n_scal e(8.4100) - 2

mod (y nuneri c_type,x nuneric_type) - nunmeric_type
Remainder of y/x; availablefor smal | i nt,i nt eger, bi gi nt,andnumneri c
nod(9, 4) -1

pi () - doubl e precision
Approximate value of Tt
pi () - 3.141592653589793

power (anuneric,bnuneric) - nuneric

power (adoubl e precision,bdouble precision) - double precision
a raised to the power of b

power (9, 3) - 729

radi ans (doubl e precision) - doubl e precision
Converts degrees to radians

227

Functions and Operators

Function
Description
Example(s)

radi ans(45.0) - 0.7853981633974483

round (nuneric) - nuneric

round (doubl e precision) - doubl e precision
Rounds to nearest integer. For nuner i c, ties are broken by rounding away from zero.
For doubl e preci si on, thetie-breaking behavior is platform dependent, but “round

to nearest even” is the most common rule.
round(42.4) - 42

round (v nuneric,sinteger) - nuneric
Rounds v to s decimal places. Ties are broken by rounding away from zero.

round(42. 4382, 2) - 42.44
round(1234.56, -1) - 1230

scal e (nuneric) - i nteger
Scale of the argument (the number of decimal digitsin the fractional part)

scal e(8.4100) - 4

sign(nunmeric) - numeric

si gn (doubl e precision) - doubl e precision
Sign of the argument (-1, O, or +1)

sign(-8.4) - -1

sqrt (numeric) - nuneric

sqgrt (doubl e precision) - doubl e precision
Square root
sqrt(2) - 1.4142135623730951

trimscal e (nunmeric) - numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing ze-

roes
trimscal e(8.4100) - 8.41

trunc (numeric) - nuneric

trunc (doubl e precision) - doubl e precision
Truncates to integer (towards zero)

trunc(42.8) - 42
trunc(-42.8) - -42

trunc (v nuneric,sinteger) - nuneric
Truncatesv to s decimal places

trunc(42.4382, 2) - 42.43
wi dt h_bucket (operand nuneric,| ownuneri c, hi gh nuneri c,count i nt eger

) - i nteger

wi dt h_bucket (oper and doubl e preci sion,| owdoubl e preci sion,hi gh
doubl e precision,count i nteger) — i nteger
Returns the number of the bucket in which oper and fallsin a histogram having count
equal-width buckets spanning the range | owto hi gh. Returns 0 or count +1 for anin-
put outside that range.
wi dt h_bucket (5. 35, 0.024, 10.06, 5) - 3

228

Functions and Operators

Function
Description
Example(s)

wi dt h_bucket (operand anyconpati bl e,t hreshol ds anyconpati bl earray)
- i nteger
Returns the number of the bucket in which oper and falls given an array listing the
lower bounds of the buckets. Returns 0 for an input less than the first lower bound.
oper and and the array elements can be of any type having standard comparison opera-
tors. Thet hr eshol ds array must be sorted, smallest first, or unexpected results will be
obtained.
wi dt h_bucket (now(), array['yesterday', 'today', 'tonor-

row]::timestanmptz[]) - 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

random() - doubl e precision
Returns arandom valueintherange 0.0 <=x < 1.0

random() — 0.897124072839091

random nor mal ([mean doubl e precision][,stddevdouble precision]]) -
doubl e precision
Returns arandom value from the normal distribution with the given parameters; mean
defaultsto 0.0 and st ddev defaultsto 1.0

random normal (0.0, 1.0) - 0.051285419

set seed (doubl e precision) - void
Sets the seed for subsequent r andon{) andr andom nor mal () calls; argument must
be between -1.0 and 1.0, inclusive
set seed(0. 12345)

Ther andon() function usesadeterministic pseudo-random number generator. It isfast but not suit-
able for cryptographic applications; see the pgcrypto module for a more secure aternative. If set -
seed() iscaled, the series of results of subsequent r andon{) callsin the current session can be
repeated by re-issuing set seed() with the same argument. Without any prior set seed() cal in
the same session, thefirstr andont() call obtainsaseed from aplatform-dependent source of random
bits. These remarks hold equally for r andom _nor mal ().

Table 9.7 shows the avail abl e trigonometric functions. Each of these functions comesin two variants,
one that measures angles in radians and one that measures angles in degrees.

Table9.7. Trigonometric Functions

Function
Description
Example(s)

acos (doubl e precision) - doubl e precision
Inverse cosing, result in radians

acos(1l) -0

acosd (doubl e precision) - doubl e precision
Inverse cosing, result in degrees

229

Functions and Operators

Function
Description
Example(s)

acosd(0.5) - 60

asi n (doubl e precision) - doubl e precision
Inverse sing, result in radians

asin(1) - 1.5707963267948966

asi nd (doubl e precision) - doubl e precision
Inverse sine, result in degrees

asi nd(0.5) - 30

at an (doubl e precision) - doubl e precision
Inverse tangent, result in radians

atan(1l) - 0.7853981633974483

at and (doubl e precision) - doubl e precision
Inverse tangent, result in degrees

atand(1) - 45

at an2 (y doubl e precision,x doubl e precision) - doubl e precision
Inverse tangent of y/x, result in radians

atan2(1, 0) - 1.5707963267948966

at an2d (y doubl e precision,x doubl e precision) - double precision
Inverse tangent of y/x, result in degrees

atan2d(1, 0) - 90

cos (doubl e precision) - doubl e precision
Cosine, argument in radians

cos(0) -1

cosd (doubl e precision) - doubl e precision
Cosine, argument in degrees

cosd(60) - 0.5

cot (doubl e precision) - doubl e precision
Cotangent, argument in radians

cot (0.5) - 1.830487721712452

cotd (doubl e precision) - doubl e precision
Cotangent, argument in degrees

cotd(45) -1

sin (doubl e precision) - doubl e precision
Sine, argument in radians

sin(1l) - 0.8414709848078965

sind (doubl e precision) - doubl e precision
Sine, argument in degrees
sind(30) - 0.5

tan (doubl e precision) - doubl e precision
Tangent, argument in radians

tan(1) - 1.5574077246549023

230

Functions and Operators

Function
Description
Example(s)

tand (doubl e precision) - doubl e precision
Tangent, argument in degrees
tand(45) -1

Note

Another way to work with angles measured in degreesisto use the unit transformation func-
tionsr adi ans() anddegr ees() shownearlier. However, using the degree-based trigono-
metric functions is preferred, as that way avoids round-off error for special cases such as
si nd(30).

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

si nh (doubl e precision) - doubl e precision
Hyperbolic sine

sinh(1l) - 1.1752011936438014

cosh (doubl e precision) - doubl e precision
Hyperbolic cosine

cosh(0) -1

tanh (doubl e precision) - doubl e precision
Hyperbolic tangent

tanh(1) - 0.7615941559557649

asi nh (doubl e precision) - doubl e precision
Inverse hyperbolic sine

asinh(1l) - 0.881373587019543

acosh (doubl e precision) - doubl e precision
Inverse hyperbolic cosine

acosh(1) -0

at anh (doubl e precision) - doubl e precision
Inverse hyperbolic tangent

atanh(0.5) — 0.5493061443340548

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of thetypeschar act er,char act er varyi ng,andt ext . Except
where noted, these functions and operators are declared to accept and return type t ext . They will
interchangeably accept char act er varyi ng arguments. Values of type char act er will be
convertedtot ext beforethe function or operator is applied, resulting in stripping any trailing spaces
inthechar act er vaue.

231

Functions and Operators

SQL defines some string functions that use key words, rather than commas, to separate arguments.

Details are in Table 9.9. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9.10).

Note

The string concatenation operator (| |) will accept non-string input, so long as at least one
input is of string type, as shown in Table 9.9. For other cases, inserting an explicit coercion to
t ext can be used to have non-string input accepted.

Table9.9. SQL String Functionsand Operators

Function/Operator
Description
Example(s)

text || text - text
Concatenates the two strings.

"Post' || 'greSQ.' - PostgreSQ

text | | anynonarray - text

anynonarray | | text - text

Converts the non-string input to text, then concatenates the two strings. (The non-string
input cannot be of an array type, because that would create ambiguity with the array | |
operators. If you want to concatenate an array's text equivalent, cast it tot ext explicit-
ly.)

"Value: ' || 42 - Value: 42

btrim(stringtext [,characterstext]) - text

Removes the longest string containing only charactersin char act er s (a space by de-
fault) from the start and end of st ri ng.

btrim'xyxtrinyyx', 'xyz') -trim

t ext | S[NOT] [f or n] NORMALI ZED - bool ean
Checks whether the string isin the specified Unicode normalization form. The option-
al f or mkey word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This ex-
pression can only be used when the server encoding is UTF8. Note that checking for nor-
malization using this expression is often faster than normalizing possibly already normal-
ized strings.

U&' \ 0061\ 0308bc' 1S NFD NORMALI ZED - t

bit_length(text) - integer
Returns number of bitsin the string (8 timesthe oct et _| engt h).
bit length('jose') - 32

char _length (text) - integer

character _length (text) - integer
Returns number of characters in the string.

char _length('josé') - 4

| oner (text) - text
Convertsthe string to al lower case, according to the rules of the database's locale.
[ower (' TOM) - tom

I pad (stringtext,lengthinteger [,fill text]) - text

232

Functions and Operators

Function/Operator
Description
Example(s)

Extendsthest ri ng tolength| engt h by prepending the charactersfi | | (aspace by
default). If thest ri ng isaready longer than | engt h then it istruncated (on the right).

[pad(' hi', 5, '"xy') - xyxhi

Itrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by de-
fault) from the start of st ri ng.

ltrim('zzzytest', 'xyz') - test

normal i ze (text [,form]) - text
Converts the string to the specified Unicode normalization form. The optional f or mkey
word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This function can only
be used when the server encoding is UTF8.

normal i ze(U& \ 0061\ 0308bc’', NFC) - U& \ 00OE4bc’

octet length(text) - integer
Returns number of bytesin the string.

octet _length('josé') - 5(if server encoding is UTF8)

octet length(character) - i nteger
Returns number of bytesin the string. Since this version of the function accepts type
char act er directly, it will not strip trailing spaces.

octet _length('abc '::character(4)) - 4

overlay (stringtext PLACI NGnewsubstringtext FROMstart i nteger [FOR

count i nteger]) - text

Replaces the substring of st r i ng that starts at the st ar t 'th character and extends for
count characterswith newsubst ri ng. If count isomitted, it defaults to the length
of newsubst ri ng.

over |l ay(' Txxxxas' placing 'homi from?2 for 4) - Thomas

position(substringtext INstringtext) - integer
Returns first starting index of the specified subst ri ng withinst ri ng, or zeroif it's
not present.

position('om in 'Thomas') - 3

rpad (stringtext,lengthinteger [,fill text]) - text
Extendsthest ri ng tolength | engt h by appending the charactersfi | | (aspaceby
default). If thest r i ng isaready longer than| engt h then it is truncated.

rpad(' hi', 5, "xy') - hixyx

rtrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by de-
fault) fromtheend of st ri ng.

rtrim’'testxxzx', 'xyz') - test

substring (stringtext [FROMstart i nteger][FORcount i nteger]) -
t ext
Extracts the substring of st ri ng starting at the st ar t 'th character if that is specified,
and stopping after count charactersif that is specified. Provide at least one of st ar t
and count .
substring(' Thomas' from2 for 3) - hom

substring(' Thomas' from 3) - onas

233

Functions and Operators

Function/Operator
Description
Example(s)

substring(' Thomas' for 2) - Th

substring (stringtext FROMpatterntext) - text
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.

substring(' Thomas' from'...$') - mas

substring (stringtext SIM LARpatterntext ESCAPEescapetext) - text

substring (stringtext FROMpatterntext FORescapetext) - text
Extracts the first substring matching SQL regular expression; see Section 9.7.2. Thefirst
form has been specified since SQL :2003; the second form was only in SQL:1999 and
should be considered obsolete.

substring(' Thonas' simlar '%t"o _a#" ' escape '#') - oma

tri m([LEADI NG| TRAI LI NG|BOTH] [characters text] FROMstringtext) —
t ext
Removes the longest string containing only charactersin char act er s (a space by de-
fault) from the start, end, or both ends (BOTH is the default) of st ri ng.

trimboth 'xyz' from'yxTonxx') - Tom
tri m([LEADI NG| TRAI LI NG| BOTH] [FROM] stringtext [,characterstext])

- text
Thisisanon-standard syntax fort ri n() .

trimboth from'yxTonxx', 'xyz') - Tom

upper (text) - text
Converts the string to all upper case, according to the rules of the database's locale.

upper('tom) - TOM

Additional string manipulation functions and operators are available and are listed in Table 9.10.
(Some of these are used internally to implement the SQL -standard string functionslisted in Table 9.9.)
There are also pattern-matching operators, which are described in Section 9.7, and operators for full-
text search, which are described in Chapter 12.

Table 9.10. Other String Functions and Operators

Function/Operator
Description
Example(s)

t ext ~@t ext - bool ean
Returnstrueif the first string starts with the second string (equivalent tothe st art -
s_w t h() function).
"al phabet' @' al ph' -t

ascii (text) - integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, re-
turns the Unicode code point of the character. In other multibyte encodings, the argument
must be an ASCII character.

ascii('x'") - 120

chr (i nteger) - text
Returns the character with the given code. In UTF8 encoding the argument is treated as a
Unicode code point. In other multibyte encodings the argument must designate an ASCI|
character. chr (0) isdisallowed because text data types cannot store that character.

234

Functions and Operators

Function/Operator
Description
Example(s)

chr(65) - A

concat (val 1"any" [,val 2"any" [,..]]) - text
Concatenates the text representations of all the arguments. NULL arguments are ignored.

concat (' abcde', 2, NULL, 22) - abcde222

concat_ws (septext,val1"any" [,val 2"any" [,..]]) - text
Concatenates all but the first argument, with separators. The first argument is used as the
separator string, and should not be NULL. Other NULL arguments are ignored.

concat_ws(',', 'abcde', 2, NULL, 22) - abcde, 2,22

format (formatstr text [,formatarg"any" [,..]]) - text
Formats arguments according to aformat string; see Section 9.4.1. Thisfunction is simi-
lar to the C functionspri nt f .

format('Hello %, %%s', 'Wrld) - Hello Wrld, Wrld

initcap(text) - text
Convertsthe first |etter of each word to upper case and the rest to lower case. Words are
seguences of aphanumeric characters separated by non-al phanumeric characters.

initcap('hi THOWVAS') - H Thonas

left (stringtext,ninteger) - text
Returnsfirst n charactersin the string, or when n is negative, returnsall but last |n| char-
acters.

| eft (' abcde', 2) - ab

I ength (text) — integer
Returns the number of charactersin the string.

length('jose') -4

md5 (text) - text
Computes the M D5 hash of the argument, with the result written in hexadecimal.

md5(" abc') - 900150983cd24f b0d6963f 7d28el7f 72

parse_ident (qualified_ identifiertext[,strict_nodebool ean DEFAULT

true]) - text[]

Splitsqual i fi ed_i denti fi er intoan array of identifiers, removing any quoting of
individual identifiers. By default, extra characters after the last identifier are considered
an error; but if the second parameter isf al se, then such extra characters are ignored.
(This behavior is useful for parsing names for objects like functions.) Note that this func-
tion does not truncate over-length identifiers. If you want truncation you can cast the re-
sult tonane[] .

parse_i dent (' " SomeSchema". soneTable') -
{ SomeSchenm, sonet abl e}

pg_client_encoding () - nanme
Returns current client encoding name.

pg_client_encoding() - UTF8

quot e_ident (text) - text
Returns the given string suitably quoted to be used as an identifier in an SQL statement
string. Quotes are added only if necessary (i.e., if the string contains non-identifier char-
acters or would be case-folded). Embedded quotes are properly doubled. See also Exam-
ple43.1.

235

Functions and Operators

Function/Operator
Description
Example(s)

quot e_i dent (' Foo bar') - "Foo bar"

quote literal (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL state-
ment string. Embedded single-quotes and backslashes are properly doubled. Note
that quot e_l i t eral returnsnull on null input; if the argument might be null,
qguot e_nul | abl e isoften more suitable. See also Example 43.1.

quote literal (EOQO'Reilly') -"O"'Reilly'

quote_literal (anyel emrent) - t ext
Converts the given value to text and then quotesit as aliteral. Embedded single-quotes
and backslashes are properly doubled.

guote_literal (42.5) - '42. 5

quote_nul | abl e (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL statement
string; or, if the argument is null, returns NULL. Embedded single-quotes and backslash-
es are properly doubled. See also Example 43.1.

quot e_nul | abl e(NULL) — NULL

quot e_nul | abl e (anyel enent) - t ext
Converts the given value to text and then quotesit asaliteral; or, if the argument is null,
returns NULL. Embedded single-quotes and backslashes are properly doubled.

qguote_nul |l abl e(42.5) - '42.5'

regexp_count (stringtext,patterntext [,start integer [,flagstext]])

- i nteger
Returns the number of times the POSIX regular expression pat t er n matchesin the
st ri ng; see Section 9.7.3.

regexp_count (' 123456789012', '\d\d\d', 2) - 3

regexp_instr (stringtext,patterntext [,start i nteger [, Ninteger [,

endoptioninteger [,flagstext [,subexpr integer]]1]1]1]) - i nteger
Returns the position within st r i ng where the Nth match of the POSIX regular expres-
sion pat t er n occurs, or zero if there is no such match; see Section 9.7.3.

regexp_instr(' ABCOEF', 'c(.)(..)", 1, 1, 0, "i') -3
regexp_instr("'ABCOEF', 'c(.)(..)", 1, 1, O, '"i', 2) -5

regexp_like(stringtext,patterntext [,flagstext]) - bool ean
Checks whether a match of the POSIX regular expression pat t er n occurs within
st ri ng; see Section 9.7.3.

regexp like('Hello World', "world$', "i') >t

regexp_match (stringtext,patterntext [,flagstext]) - text[]
Returns substrings within the first match of the POSIX regular expression pat t er n to
thest ri ng; see Section 9.7.3.

regexp_mat ch(' f oobar bequebaz', ' (bar)(beque)') - {bar, beque}

regexp_matches (stringtext,patterntext [,flagstext]) - setof
text[]
Returns substrings within the first match of the POSIX regular expression pat t er n
tothest ri ng, or substrings within all such matchesif the g flag is used; see Sec-
tion 9.7.3.

236

Functions and Operators

Function/Operator
Description
Example(s)

regexp_nat ches(' f oobar bequebaz', 'ba.', 'g') -

{bar}
{baz}

regexp_replace (stringtext,patterntext,replacenent text [,start in-

teger J[,flagstext]) - text
Replaces the substring that is the first match to the POSIX regular expression pat t er n,
or al such matches if the g flag is used; see Section 9.7.3.

regexp_replace(' Thomas', '.[mM\Ja.', 'M) - ThM

regexp_replace (stringtext,patterntext,replacenent text,start inte-

ger,Ninteger [,flagstext]) - text
Replaces the substring that is the Nth match to the POSIX regular expression pat t er n,
or al such matchesif Nis zero; see Section 9.7.3.

regexp_replace(' Thomas', '.', 'X, 3, 2) - ThoXas

regexp_split_to_array(stringtext,patterntext [,flagstext]) -
text[]
Splitsst ri ng using a POSIX regular expression as the delimiter, producing an array of
results; see Section 9.7.3.

regexp_split_to_array('hello world', "\s+') - {hello,world}

regexp_split to table(stringtext,patterntext [,flagstext]) -
set of text
Splitsst ri ng using a POSIX regular expression as the delimiter, producing a set of re-
sults; see Section 9.7.3.

regexp_split_to_ table('hello world', '"\s+') -

hel |l o
wor | d

regexp_substr (stringtext,patterntext [,start i nteger [,Ninteger [,

flagstext [,subexpr integer]]]]) - text
Returns the substring within st r i ng that matches the N'th occurrence of the POSIX
regular expression pat t er n, or NULL if there is no such match; see Section 9.7.3.

regexp_substr(' ABCOEF', 'c(.)(..)', 1, 1, "i') - CDEF
regexp_substr(' ABCOEF', 'c(.)(..)', 1, 1, "i', 2) - EF

repeat (stringtext,nunber integer) - text
Repeats st r i ng the specified nunber of times.

repeat (' Pg', 4) - PgPgPgPg

replace(stringtext,fromtext,totext) - text
Replaces all occurrencesin st ri ng of substring f r omwith substring t o.

repl ace(' abcdef abcdef', 'cd', 'XX') - abXXef abXXef

reverse (text) - text
Reverses the order of the charactersin the string.

reverse('abcde') - edcha

right (stringtext,ninteger) - text

237

Functions and Operators

Function/Operator
Description
Example(s)

Returnslast n charactersin the string, or when n is negative, returns all but first |n| char-
acters.

right (' abcde', 2) - de

split_part (stringtext,delimter text,ninteger) - text
Splitsst ri ng at occurrencesof del i mi t er and returnsthe n'th field (counting from
one), or when n is negative, returns the [n|'th-from-last field.

split_part('abc~@def~@ghi', '~@', 2) - def
split_part('abc,def,ghi,jkl', ",", -2) - ghi

starts_with(stringtext,prefixtext) - bool ean
Returnstrueif st ri ng startswith pr ef i x.

starts_wth('al phabet', "alph') -t

string_to_array (stringtext,delinmiter text [,null_stringtext]) -
text[]
Splitsthe st ri ng at occurrences of del i mi t er and formsthe resulting fieldsinto a
text array. If del i mi t er isNULL, each character inthest ri ng will become a sep-
arate element in the array. If del i mi t er isan empty string, thenthe st ri ng istreat-
edasasinglefield. If nul | _st ri ng issupplied and is not NULL, fields matching that
string arereplaced by NULL. Seedsoarray_t o_stri ng.

string_to_array(' xx~~yy~~zz', '~~", 'yy') - {xx, NULL, zz}

string_to table(stringtext,delimter text [,null_stringtext]) -
set of text
Splitsthe st ri ng at occurrences of del i m t er and returnstheresulting fieldsas a
set of t ext rows. If del i mi t er isNULL, each character inthe st ri ng will become
aseparate row of theresult. If del i mi t er isan empty string, thenthe st ri ng istreat-
edasasinglefield. If nul | _stri ng issupplied and is not NULL, fields matching that
string are replaced by NULL.

string to_table(’ xx~"~yy~~r~zz', '~A~' 'yy') o

XX
NULL
zz

strpos (stringtext,substringtext) - integer
Returns first starting index of the specified subst ri ng withinst ri ng, or zeroif it's
not present. (Sameasposi ti on(substring in string), butnotethereversed
argument order.)

strpos('high', '"ig') -2

substr (stringtext,start i nteger [,count i nteger]) - text
Extracts the substring of st r i ng starting at the st ar t 'th character, and extending for
count charactersif that is specified. (Sameassubstri ng(string fromstart
for count).)

substr (' al phabet', 3) - phabet
substr (' al phabet', 3, 2) - ph

to_ascii (stringtext) - text
to_ascii (stringtext,encodi ngnane) - text
to_ascii (stringtext,encodinginteger) - text

238

Functions and Operators

9.4.1.

Function/Operator
Description
Example(s)

Convertsst ri ng to ASCII from another encoding, which may be identified by name or
number. If encodi ng isomitted the database encoding is assumed (which in practice is
the only useful case). The conversion consists primarily of dropping accents. Conversion
isonly supported from LATI N1, LATI N2, LATI N9, and W N1250 encodings. (See the
unaccent module for another, more flexible solution.)

to_ascii('Karél') - Karel

to_hex (integer) - text

to_hex (bigint) - text
Converts the number to its equivalent hexadecimal representation.
to_hex(2147483647) - 7fffffff

translate(stringtext,fromtext,totext) - text
Replaces each character in st r i ng that matches a character in the f r omset with the
corresponding character inthet o set. If f r omislonger thant o, occurrences of the ex-
tracharactersin f r omare deleted.

translate(' 12345', '143', 'ax') - a2x5h

uni str (text) - text
Evaluate escaped Unicode charactersin the argument. Unicode characters can be speci-
fied as\ XXXX (4 hexadecimal digits), \ +XXXXXX (6 hexadecimal digits), \ uXXXX (4
hexadecimal digits), or \ UXXXXXXXX (8 hexadecimal digits). To specify a backslash,
write two backslashes. All other characters are taken literally.
If the server encoding is not UTF-8, the Unicode code point identified by one of these es-
cape sequences is converted to the actual server encoding; an error is reported if that's not
possible.
This function provides a (non-standard) alternative to string constants with Unicode es-
capes (see Section 4.1.2.3).

uni str('d\0061t\+000061') - data
uni str (' d\u0061t\U00000061"') - data

Theconcat,concat _ws andf or mat functionsarevariadic, soit ispossibleto passthe valuesto
be concatenated or formatted as an array marked with the VARI ADI C keyword (see Section 38.5.6).
The array's elements are treated as if they were separate ordinary arguments to the function. If the
variadic array argument is NULL, concat and concat _ws return NULL, but f or nat treats a
NULL as azero-element array.

See also the aggregate function st ri ng_agg in Section 9.21, and the functions for converting be-
tween strings and the byt ea typein Table 9.13.

f or mat

The function f or mat produces output formatted according to a format string, in a style similar to
the C functionspri nt f .

format (formatstr text [, formatarg "any" [, ...] 1)

format str isaformat string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into theresult. Each f or mat ar g argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

239

Functions and Operators

Format specifiers are introduced by a %character and have the form

% position][flags][w dth]type
where the component fields are:
posi ti on (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first
argument after f or mat st r . If theposi t i on isomitted, the default isto use the next argument
in sequence.

fl ags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flagisaminussign (-) which will causethe format specifier's output to beleft-justified.
This has no effect unlessthewi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the l€eft or right (depending on the - flag) with spaces as needed to fill the
width. A too-small width does not cause truncation of the output, but issimply ignored. The width
may be specified using any of the following: a positive integer; an asterisk (*) to use the next
function argument as the width; or a string of the form * n$ to use the nth function argument
as the width.

If the width comes from afunction argument, that argument is consumed before the argument that
isused for the format specifier'svalue. If the width argument is negative, the result isleft aligned
(asif the - flag had been specified) within afield of length abs(wi dt h).

t ype (required)

Thetype of format conversion to use to produce the format specifier's output. Thefollowing types
are supported:

« s formats the argument value as asimple string. A null value istreated as an empty string.

| treatsthe argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quot e_i dent).

* L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the specia sequence %86may be used to output
aliteral %character.

Here are some examples of the basic format conversions:
SELECT format (' Hello %', '"Wrld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %6, 'one', '"twd', 'three');
Result: Testing one, two, three, %

SELECT format (' I NSERT I NTO %9 VALUES(%.)', 'Foo bar', E O
\'Reilly");
Resul t: I NSERT I NTO "Foo bar" VALUES(' O 'Reilly")

240

Functions and Operators

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'locations', 'C: \Program
Files');
Result: I NSERT INTO | ocations VALUES(' C:\Program Files')

Here are examplesusing wi dt h fields and the - flag:

SELECT format('|9%0s|', 'foo');
Resul t: | f oo|
SELECT format('| % 10s|', 'foo0');

Result: |foo |

SELECT format('|%s|', 10, 'foo');
Resul t: | f oo|

SELECT format('|%s|', -10, 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo');
Result: |foo |

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

These examples show use of posi ti on fields:

SELECT fornmat (' Testing ¥8%s, %®%s, %$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%2%s|', 'foo', 10, 'bar');
Resul t: | bar |

SELECT format (' |%$*2%s|', 'foo', 10, 'bar');
Resul t: | foo|

Unlike the standard C function spri nt f , PostgreSQL's f or mat function allows format specifiers
with and without posi t i on fieldsto be mixed in the same format string. A format specifier without
aposi ti on field aways uses the next argument after the last argument consumed. In addition, the
f or mat function does not requireall function argumentsto be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

The % and % format specifiers are particularly useful for safely constructing dynamic SQL state-
ments. See Example 43.1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating binary strings, that is
valuesof typebyt ea. Many of theseare equivalent, in purpose and syntax, to the text-string functions
described in the previous section.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

241

Functions and Operators

Table9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

bytea|| bytea - bytea
Concatenates the two binary strings.
'\ x123456' . : bytea || '\x789a00bcde'::bytea -
\ x123456789a00bcde

bit_Iength(bytea) - i nteger
Returns number of bitsin the binary string (8 timestheoct et _| engt h).

bit length('\x123456':: bytea) - 24

bt ri m(byt es byt ea, byt esrenoved byt ea) - byt ea
Removes the longest string containing only bytes appearing in byt esr enoved from
the start and end of byt es.

btrim'\x1234567890' : : bytea, '\x9012'::bytea) - \x345678

I tri m(bytes bytea,bytesrenovedbytea) - bytea
Removes the longest string containing only bytes appearing in byt esr enoved from
the start of byt es.

[trim'\x1234567890" :: bytea, '\x9012'::bytea) - \x34567890

octet _length(bytea) - integer
Returns number of bytesin the binary string.
octet length('\x123456':: bytea) - 3

overl ay (byt es byt ea PLACI NGnewsubstri ng byt ea FROMst art i nt eger |

FORcount i nteger]) — bytea

Replaces the substring of byt es that starts at the st ar t 'th byte and extends for count
byteswith newsubst ri ng. If count isomitted, it defaults to the length of newsub-
string.

overl ay('\x1234567890' : : bytea placing '\002\003':: byt ea

from2 for 3) - \x12020390

position (substringbyteal Nbytes bytea) - i nteger
Returns first starting index of the specified subst ri ng within byt es, or zero if it's
not present.

position('\x5678"::bytea in '\x1234567890"' :: bytea) - 3

rtri m(bytes bytea, bytesrenoved bytea) - bytea
Removes the longest string containing only bytes appearing in byt esr enoved from
theend of byt es.

rtrim'\x1234567890' :: bytea, '\x9012'::bytea) - \x12345678

substring (bytes bytea[FROMstart i nteger][FORcount i nteger]) -
byt ea
Extracts the substring of byt es starting at the st ar t 'th byteif that is specified, and
stopping after count bytesif that is specified. Provide at least one of st art and
count .

substring('\x1234567890' : : bytea from 3 for 2) - \x5678

tri m([LEADI NG| TRAI LI NG| BOTH] byt esr enoved byt ea FROMbyt es bytea) -
byt ea
Removes the longest string containing only bytes appearing in byt esr enpved from
the start, end, or both ends (BOTH is the default) of byt es.

242

Functions and Operators

Function/Operator
Description
Example(s)

trim'\x9012'::bytea from'\x1234567890' : : bytea) - \x345678

tri m([LEADI NG| TRAI LI NG| BOTH] [FROM] byt es byt ea, byt esr enoved byt ea)
- bytea
Thisisanon-standard syntax fort ri m() .
trimboth from'\x1234567890':: bytea, '\x9012'::bytea) -
\ x345678

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of
them are used internally to implement the SQL -standard string functionslisted in Table 9.11.

Table 9.12. Other Binary String Functions

Function
Description
Example(s)

bit count (bytes bytea) - bi gint
Returns the number of bits set in the binary string (also known as “popcount”).
bit count ('\x1234567890' :: bytea) - 15

get _bit (bytes bytea,nbigint) - integer
Extracts n'th bit from binary string.
get _bit('\x1234567890' : : bytea, 30) -1

get _byte (bytes bytea,ninteger) - integer
Extracts n'th byte from binary string.
get _byte('\x1234567890' : : bytea, 4) - 144

| ength (bytea) - i nt eger
Returns the number of bytesin the binary string.
| engt h('\x1234567890" : : bytea) - 5

| engt h (byt es byt ea, encodi ng nhane) - i nt eger
Returns the number of charactersin the binary string, assuming that it is text in the given
encodi ng.

length('jose'::bytea, 'UTF8') - 4

md5 (bytea) - t ext
Computes the M D5 hash of the binary string, with the result written in hexadecimal.

nmd5("' Th\ 000onas' : : byt ea) - 8ab2d3c9689aaf 18b4958c334c82d8bl

set _bit (bytes bytea,nbigint,newal ueinteger) - bytea
Setsn'th bit in binary string to newal ue.

set _bit('\x1234567890' :: bytea, 30, 0) - \x1234563890

set _byte (bytes bytea,ninteger,newal ueinteger) - bytea
Sets n'th byte in binary string to newval ue.
set _byte('\x1234567890' :: bytea, 4, 64) - \x1234567840

sha224 (bytea) - bytea
Computes the SHA-224 hash of the binary string.
sha224(' abc' :: bytea) - \x23097d223405d8228642a477bda2
55b32aadbce4bdalOb3f 7e36c9da?

243

Functions and Operators

Function
Description
Example(s)

sha256 (bytea) - bytea
Computes the SHA-256 hash of the binary string.

sha256("' abc' :: bytea) - \xba7816bf 8f 01lcfead414140de5dae2223
b00361a396177a9cb410f f 61f 20015ad

sha384 (bytea) - bytea
Computes the SHA-384 hash of the binary string.
sha384(' abc' :: bytea) - \xch00753f 45a35e8bb5a03d699ac65007

272c32ab0eded1631a8b605a43f f 5bed8086072bale7cc2358bae-
cal34c825a7

sha512 (bytea) - bytea
Computes the SHA-512 hash of the binary string.

shab512("' abc' :: bytea) - \ xddaf 35a193617abac-
c417349ae20413112e6f a4e89a97ea20a9eeeeb64b55d39a
2192992a274f cla836ba3c23a3f eebbd
454d4423643ce80e2a9ac94f ab4cadof

substr (bytes bytea,start i nteger [,count integer]) - bytea
Extracts the substring of byt es starting at the st ar t 'th byte, and extending for
count bytesif that is specified. (Sameassubstri ng(bytes fromstart for
count).)

substr('\x1234567890' : : bytea, 3, 2) - \x5678

Functions get _byt e and set _byt e number the first byte of a binary string as byte 0. Functions
get _bit andset _bi t number bits from the right within each byte; for example bit 0 is the least
significant bit of the first byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function nd5 returnsahex-encoded value of typet ext whereasthe SHA-2
functions return type byt ea. Use the functions encode and decode to convert between the two.
For examplewriteencode(sha256("' abc'), ' hex') toget ahex-encoded text representation,
ordecode(nmd5(" abc'), 'hex') togetabytea vaue.

Functions for converting strings between different character sets (encodings), and for representing
arbitrary binary data in textua form, are shown in Table 9.13. For these functions, an argument or
result of typet ext isexpressed in the database's default encoding, while arguments or results of type
byt ea are in an encoding named by another argument.

Table 9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

convert (bytes bytea,src_encodi ng nane,dest _encodi ng nane) - byt ea
Converts abinary string representing text in encoding sr ¢_encodi ng to abinary
string in encoding dest _encodi ng (see Section 24.3.4 for available conversions).
convert('text _in utf8, '"UTF8', 'LATINL') -
\ Xx746578745f 696e5f 75746638

convert _from(bytes bytea,src_encodi ngnane) - text
Converts a binary string representing text in encoding sr ¢_encodi ng tot ext inthe
database encoding (see Section 24.3.4 for available conversions).

convert _from('text_in_utf8 , "UTF8') - text_in_utf8

244

Functions and Operators

Function
Description
Example(s)

convert _to(stringtext,dest_encodi ngnane) - bytea
Convertsat ext string (in the database encoding) to a binary string encoded in encoding
dest _encodi ng (see Section 24.3.4 for available conversions).

convert to('sonme_text', 'UTF8') - \x736f6d655f 74657874

encode (bytes bytea,format text) - text
Encodes binary data into atextual representation; supported f or mat vaues are:
base64, escape, hex.

encode(' 123\ 000\ 001', 'base64') - Ml zAAE=

decode (stringtext,format text) - bytea
Decodes binary data from atextual representation; supported f or mat values are the
same asfor encode.

decode(' MIl zAAE=", 'Dbase64') - \x3132330001

Theencode and decode functions support the following textual formats:

base64

Thebase64 format isthat of RFC 2045 Section 6.8%. As per the RFC, encoded lines are broken
at 76 characters. However instead of the MIME CRLF end-of-line marker, only anewlineis used
for end-of-line. Thedecode functionignores carriage-return, newline, space, and tab characters.
Otherwise, an error is raised when decode is supplied invalid base64 data — including when
trailing padding is incorrect.

escape

Theescape format convertszero bytesand byteswith the high bit set into octal escape sequences
(\ nnn), and it doubles backslashes. Other byte values are represented literaly. The decode
function will raise an error if a backslash is not followed by either a second backslash or three
octal digits; it accepts other byte values unchanged.

hex

Thehex format represents each 4 bits of data as one hexadecimal digit, O through f , writing the
higher-order digit of each byte first. The encode function outputs the a-f hex digitsin lower
case. Because the smallest unit of datais 8 bits, there are always an even number of characters
returned by encode. The decode function acceptsthe a-f charactersin either upper or lower
case. An error israised when decode isgiven invalid hex data— including when given an odd
number of characters.

See also the aggregate function st ri ng_agg in Section 9.21 and the large object functions in Sec-
tion 35.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of thetypesbit and bit varyi ng. (While only type bi t is mentioned in these tables,
valuesof typebi t var yi ng can be used interchangeably.) Bit strings support the usual comparison
operators shown in Table 9.1, aswell as the operators shown in Table 9.14.

L hitps://datatracker.ietf.org/doc/html/rfc2045¢#section-6.8

245

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Functions and Operators

Table 9.14. Bit String Operators

Operator
Description
Example(s)

bit || bit - bit
Concatenation
B' 10001' || B' 011' - 10001011

bit &bit - bit
Bitwise AND (inputs must be of equal length)

B'10001' & B' 01101' - 00001

bit] bit - bit
Bitwise OR (inputs must be of equal length)
B'10001' | B 01101' - 11101

bit #bit - bit
Bitwise exclusive OR (inputs must be of equal length)

B'10001' # B'01101' - 11100

~bit - bit
Bitwise NOT
~ B'10001'" - 01110

bit <<integer - bit
Bitwise shift left (string length is preserved)
B' 10001' << 3 - 01000

bit >>integer - bit
Bitwise shift right (string length is preserved)
B' 10001' >> 2 - 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Ta-
ble 9.15.

Table 9.15. Bit String Functions

Function
Description
Example(s)

bit _count (bit) - bigint
Returns the number of bits set in the bit string (also known as “ popcount”).
bit_count (B 10111') - 4

bit length(bit) - integer
Returns number of bitsin the bit string.
bit length(B 10111') -5

length(bit) - integer
Returns number of bitsin the bit string.
[ength(B 10111') - 5

octet length(bit) - integer
Returns number of bytesin the bit string.
octet_length(B 1011111011') - 2

246

Functions and Operators

Function
Description
Example(s)

overlay (bitsbit PLACI NGnewsubstringbit FROMstart i nt eger [FOR
count integer]) - bit
Replaces the substring of bi t s that starts at the st ar t 'th bit and extends for count
bitswith newsubst ri ng. If count isomitted, it defaults to the length of newsub-
string.
over | ay(B 01010101010101010"' placing B 11111' from 2 for 3)
- 0111110101010101010

position(substringbit INbitsbhit) - integer
Returnsfirst starting index of the specified subst ri ng withinbi t s, or zero if it's not
present.

position(B 010" in B 000001101011') - 8

substring (bitsbit [FROMstart i nteger][FORcount i nteger]) - bit
Extracts the substring of bi t s starting at the st ar t 'th bit if that is specified, and stop-
ping after count bitsif that is specified. Provide at least one of st art and count .

substring(B 110010111111" from3 for 2) - 00

get _bit (bitsbit,ninteger) - integer
Extracts n'th bit from bit string; the first (Ieftmost) bit is bit O.
get _bit (B 101010101010101010', 6) - 1

set _bit (bitsbit,ninteger,newal ueinteger) - bit
Setsn'th bit in bit string to newal ue; the first (Ieftmost) bit is bit O.
set _bit (B 101010101010101010', 6, 0) - 101010001010101010

In addition, it is possible to cast integral valuesto and from type bi t . Casting an integer to bi t (n)
copies the rightmost n bits. Casting an integer to a bit string width wider than the integer itself will
sign-extend on the left. Some examples:

44: :bit (10) 0000101100
44: :bit (3) 100

cast(-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means castingtobi t (1) , and so will deliver only the least significant
bit of the integer.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL : the traditional SQL
LI KE operator, the morerecent SI M LAR TOoperator (added in SQL :1999), and POSIX-style reg-
ular expressions. Aside from the basic “ does this string match this pattern?’ operators, functions are
available to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined func-
tion in Perl or Tcl.

247

Functions and Operators

9.7.1.

Caution

While most regul ar-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to
impose a statement timeout.

Searchesusing SI M LAR TO patterns have the same security hazards, since SI M LAR TO
provides many of the same capabilities as POSI X-style regular expressions.

L1 KE searches, being much simpler than the other two options, are safer to use with possi-
bly-hostile pattern sources.

The pattern matching operators of all three kinds do not support nondeterministic collations. If re-
quired, apply adifferent collation to the expression to work around this limitation.

LI KE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LI KE expression returns true if the st r i ng matches the supplied pat t er n. (As expected, the
NOT LI KE expression returns false if LI KE returns true, and vice versa. An equivalent expression
iSNOT (string LIKE pattern).)

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LI KE acts like the equals operator. An underscore () in patt er n stands for
(matches) any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true
"abc' LIKE' b’ true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match aliteral underscore or percent sign without matching other characters, the respective char-
acterinpat t er n must be preceded by the escape character. The default escape character isthe back-
dash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note

If you have standard_conforming_stringsturned off, any backslashesyou writein literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ' ' . This effectively disables
the escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signsin the pattern.

248

Functions and Operators

9.7.2.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than
defaulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in
thisregard is therefore slightly nonstandard.

The key word | LI KE can be used instead of LI KE to make the match case-insensitive according to
the active locale. Thisisnot in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LI KE, and ~~* correspondsto | LI KE. Therearealso! ~~ and !
~~* operators that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are
PostgreSQL -specific. Y ou may seethese operator namesin EXPLAI Noutput and similar places, since
the parser actually translates L1 KE et al. to these operators.

The phrases LI KE, | LI KE, NOT LI KE, and NOT | LI KE are generadly treated as operators in
PostgreSQL syntax; for example they can be used in expr essi on oper at or ANY (subquery)
constructs, although an ESCAPE clause cannot be included there. In some obscure cases it may be
necessary to use the underlying operator names instead.

Also see the starts-with operator * @and the corresponding st art s_wi t h() function, which are
useful in cases where simply matching the beginning of a string is needed.

SI M LAR TORegular Expressions

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

The SI M LAR TOoperator returns true or false depending on whether its pattern matches the given
string. Itissimilar to LI KE, except that it interprets the pattern using the SQL standard's definition of a
regular expression. SQL regular expressions are a curious cross between L1 KE notation and common
(POSIX) regular expression notation.

Like LI KE, the SI M LAR TOoperator succeeds only if its pattern matches the entire string; thisis
unlike common regular expression behavior where the pattern can match any part of the string. Also
likeLl KE, SI M LAR TOuses__ and %as wildcard characters denoting any single character and any
string, respectively (these are comparableto. and . * in POSIX regular expressions).

In addition to these facilities borrowed from L1 KE, SI M LAR TO supports these pattern-matching
metacharacters borrowed from POSI X regular expressions:

* | denotes alternation (either of two aternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

 ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previousitem exactly mtimes.
e {m } denotes repetition of the previous item mor more times.

* {m n} denotesrepetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression|[. ..] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

Aswith LI KE, a backslash disables the special meaning of any of these metacharacters. A different
escape character can be specified with ESCAPE, or the escape capability can be disabled by writing
ESCAPE ' ' .

249

Functions and Operators

9.7.3.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than
defaulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in
thisregard is therefore slightly nonstandard.

Another nonstandard extension is that following the escape character with a letter or digit provides
access to the escape sequences defined for POSIX regular expressions; see Table 9.20, Table 9.21,
and Table 9.22 below.

Some examples:

"abc' SIMLAR TO 'abc' true
"abc' SIMLAR TO'a' fal se
"abc' SIMLAR TO ' %b|d)% true
"abc' SIMLAR TO ' (b]c)% fal se

'-abc-' SIMLAR TO ' %A nabc\ M4 true
' xabcy' SIMLAR TO ' % mabc\M4 fal se

The subst ri ng function with three parameters provides extraction of a substring that matches an
SQL regular expression pattern. The function can be written according to standard SQL syntax:
substring(string simlar pattern escape escape-character)

or using the now obsolete SQL:1999 syntax:

substring(string frompattern for escape-character)

or as a plain three-argument function:

substring(string, pattern, escape-character)

Aswith SI M LAR TO, the specified pattern must match the entire data string, or else the function
fails and returns null. To indicate the part of the pattern for which the matching data sub-string is
of interest, the pattern should contain two occurrences of the escape character followed by a double
quote ("). The text matching the portion of the pattern between these separators is returned when the
match is successful.

The escape-double-quote separators actually dividesubst r i ng'spatterninto threeindependent reg-
ular expressions; for example, avertical bar (|) in any of the three sections affects only that section.
Also, thefirst and third of these regular expressions are defined to match the smallest possible amount
of text, not the largest, when there is any ambiguity about how much of the data string matches which
pattern. (In POSIX parlance, the first and third regular expressions are forced to be non-greedy.)

As an extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote
separator, in which case the third regular expression istaken as empty; or no separators, in which case
the first and third regular expressions are taken as empty.

Some examples, with #" delimiting the return string:

substring(' foobar' simlar '%t"o _b#"'% escape '#') oob
substring(' foobar' simlar '#"0 _b#"'% escape '#') NULL

POSIX Regular Expressions

Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

250

Functions and Operators

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~text - bool ean
String matches regular expression, case sensitively
"thomas' ~ '"t.*ma' -t

text ~* text - bool ean
String matches regular expression, case-insensitively
"thomas' ~* 'T.*ma' -t

text I ~text - bool ean
String does not match regular expression, case sensitively

"thonmas' !~ "t.*max' -t

text ! ~* text - bool ean
String does not match regular expression, case-insensitively

"thomas' !'~* 'T.*ma' - f

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SIM LAR TO operators. Many Unix tools such as egr ep, sed, or awk use a pattern matching
language that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string issaid to match aregular expressionif it isamember of the regular set described
by the regular expression. As with LI KE, pattern characters match string characters exactly unless
they are special charactersin the regular expression language — but regular expressions use different
special characters than LI KE does. Unlike LI KE patterns, aregular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abcd' ~ 'bc' true

"abcd' ~ 'a.c' true —dot matches any character

"abcd' ~ 'a.*d' true —* repeats the preceding pattern item
"abcd' ~ '(b|x)" true —| neans OR, parentheses group

"abcd' ~ '7"a’ true —” anchors to start of string

"abcd' ~ '"~(bJc)' false —would match except for anchoring

The POSIX pattern language is described in much greater detail below.

The subst r i ng function with two parameters, subst ri ng(string from pattern), pro-
vides extraction of a substring that matches a POSI X regular expression pattern. It returns null if there
isno match, otherwise thefirst portion of the text that matched the pattern. But if the pattern contains
any parentheses, the portion of the text that matched the first parenthesized subexpression (the one
whose left parenthesis comesfirst) isreturned. Y ou can put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception. If you need parenthesesin
the pattern before the subexpression you want to extract, see the non-capturing parentheses described
below.

Some examples:

substring(' foobar' from'o.b") oob

251

Functions and Operators

substring(' foobar' from'o(.)b") o]

Ther egexp_count function countsthe number of placeswhereaPOSI X regular expression pattern
matches a string. It has the syntax r egexp_count (string, pattern|[,start [, fl ags]]).
patt er n issearched for in st ri ng, normaly from the beginning of the string, but if the st ar t
parameter is provided then beginning from that character index. Thef | ags parameter is an optional
text string containing zero or more single-letter flagsthat change the function's behavior. For example,
includingi inf | ags specifiescase-insensitive matching. Supported flagsaredescribedin Table9.24.

Some examples:

regexp_count (' ABCABCAXYaxy', "A") 3
regexp_count (' ABCABCAXYaxy', "A.', 1, 'i') 4

Ther egexp_i nst r function returns the starting or ending position of the Nth match of a POSIX
regular expression patternto astring, or zeroif thereisno such match. It hasthe syntax r egexp_i n-

str(string,pattern[,start [,N[,endoption|[,flags[,subexpr]]]]]). patternis
searched for in st ri ng, normally from the beginning of the string, but if the st art parameter is
provided then beginning from that character index. If Nis specified then the N'th match of the pattern
is located, otherwise the first match is located. If the endopt i on parameter is omitted or specified
as zero, the function returns the position of the first character of the match. Otherwise, endopt i on
must be one, and the function returns the position of the character following the match. The f | ags
parameter is an optional text string containing zero or more single-letter flags that change the func-
tion's behavior. Supported flags are described in Table 9.24. For a pattern containing parenthesized
subexpressions, subexpr isan integer indicating which subexpression is of interest: the result iden-
tifies the position of the substring matching that subexpression. Subexpressions are numbered in the
order of their leading parentheses. When subexpr isomitted or zero, the result identifies the position
of the whole match regardless of parenthesized subexpressions.

Some examples:

regexp_instr (' nunber of your street, town zip, FR, '[*]+
23

regexp_instr(' ABCOEFGH ', '(c..)(...)", 1, 1, 0O, '"i', 2)
6

., 1,2)

Ther egexp_I i ke function checks whether a match of a POSIX regular expression pattern occurs
within astring, returning boolean true or false. It hasthesyntax r egexp_| i ke(stri ng,pattern
[, flags]). Thefl ags parameter is an optional text string containing zero or more single-letter
flags that change the function's behavior. Supported flags are described in Table 9.24. This function
has the same results as the ~ operator if no flags are specified. If only thei flag is specified, it has
the same results asthe ~* operator.

Some examples:

regexp_like('Hello Wrld' , "world') fal se
regexp_like('Hello Wrld , "world , '"i') true

Ther egexp_mmat ch function returns atext array of matching substring(s) within the first match of
a POSIX regular expression pattern to a string. It has the syntax r egexp_mat ch(st ri ng, pat -
tern [, flags]). If thereis no match, the result is NULL. If amatch is found, and the patt ern
contains no parenthesized subexpressions, then the result is a single-element text array containing the
substring matching the whole pattern. If a match is found, and the pat t er n contains parenthesized
subexpressions, then the result is atext array whose n'th element is the substring matching the n'th
parenthesized subexpression of the pat t er n (not counting “non-capturing” parentheses; see below
for details). Thef | ags parameter isan optional text string containing zero or more single-letter flags
that change the function's behavior. Supported flags are described in Table 9.24.

252

Functions and Operators

Some examples:

SELECT regexp_mat ch(' f oobar bequebaz', 'bar.*que');
regexp_mat ch

{barbeque}
(1 row

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_mat ch

{bar, beque}
(1 row

Tip

In the common case where you just want the whole matching substring or NULL for no match,
the best solutionistouser egexp_substr () . However,r egexp_substr () only exists
in PostgreSQL version 15 and up. When working in older versions, you can extract the first
element of r egexp_mat ch() 'sresult, for example:

SELECT (regexp_match(' f oobarbequebaz', 'bar.*que'))[1];
regexp_nat ch

bar beque

(1 row

Ther egexp_nmat ches function returns aset of text arrays of matching substring(s) within matches
of a POSIX regular expression pattern to a string. It has the same syntax asr egexp_nat ch. This
function returns no rowsiif thereis no match, onerow if thereisamatch and the g flag is not given, or
Nrowsif there are N matches and the g flag is given. Each returned row is atext array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pat t er n,
just as described above for r egexp_mat ch. r egexp_nat ches accepts al the flags shown in
Table 9.24, plusthe g flag which commandsiit to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_mat ches

SELECT regexp_mat ches(' f oobar bequebazi | barf bonk', ' (b[”b]+)
(b["b]+)", "g");
regexp_mat ches

{bar, beque}
{bazil, barf}
(2 rows)

Tip

In most casesr egexp_nat ches() should be used with the g flag, since if you only want
the first match, it's easier and more efficient to user egexp_mat ch() . However, r egex-

253

Functions and Operators

p_mat ch() only existsin PostgreSQL version 10 and up. When working in older versions,
acommon trick isto placear egexp_mat ches() call in asub-select, for example:

SELECT col 1, (SELECT regexp_matches(col 2, ' (bar)(beque)'))
FROM t ab;

This produces atext array if there'samatch, or NULL if not, the sameasr egexp_nat ch()
would do. Without the sub-select, this query would produce no output at al for table rows
without a match, which istypically not the desired behavior.

Ther egexp_r epl ace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It hasthe syntax r egexp_r epl ace(sour ce, pattern,repl ace-

ment [,start [,N]][,fl ags]). (Noticethat N cannot be specified unlessst art is, but f | ags
can begivenin any case.) Thesour ce string isreturned unchanged if thereis no match to the pat -

t er n. If thereisamatch, the sour ce string is returned with ther epl acenent string substituted
for the matching substring. The r epl acenent string can contain \ n, where n is 1 through 9, to
indicate that the source substring matching the n'th parenthesized subexpression of the pattern should
be inserted, and it can contain \ & to indicate that the substring matching the entire pattern should be
inserted. Write\ \ if you need to put aliteral backslash in the replacement text. pat t er n is searched
forin st ri ng, normally from the beginning of the string, but if the st art parameter is provided
then beginning from that character index. By default, only the first match of the pattern is replaced.
If Nis specified and is greater than zero, then the N'th match of the pattern is replaced. If the g flag
isgiven, or if Nis specified and is zero, then all matches at or after the st ar t position are replaced.
(Theg flag isignored when Nis specified.) Thef | ags parameter isan optional text string containing
zero or more single-letter flags that change the function's behavior. Supported flags (though not g)
are described in Table 9.24.

Some examples:

regexp_repl ace(' foobarbaz', "b..", 'X)
f ooXbaz
regexp_replace(' foobarbaz', 'b..", "X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)', "X\1Y'", 'g')
f ooXar YXazY
regexp_replace(' A PostgreSQ. function', '"alje|li|oju, "X, 1, O,
] I])
X PXst gr XSQL f Xnct XXn
regexp_replace(' A PostgreSQ. function', '"alje|li|oju, "X, 1, 3,
] I])
A Post gr XSQL function

Theregexp_split _to_tabl e function splitsastring using a POSIX regular expression pattern
as adelimiter. It hasthe syntax r egexp_split_to_tabl e(string,pattern[,flags]).If
there is no match to the pat t er n, the function returnsthe st r i ng. If there is at least one match,
for each match it returns the text from the end of the last match (or the beginning of the string) to
the beginning of the match. When there are no more matches, it returns the text from the end of the
last match to the end of the string. The f | ags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. r egexp_spl it _t o_t abl e supports
the flags described in Table 9.24.

Theregexp_split_to_array function behaves the sasme asregexp_split _to_tabl e,
except that regexp_split_to_array returnsitsresult as an array of t ext . It has the syntax
regexp_split_to_array(string,pattern[,fl ags]). Theparametersarethe sameasfor
regexp_split_to_table.

254

Functions and Operators

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox junps
over the lazy dog', '\s+') AS foo;
f oo

SELECT regexp_split_to_array('the quick brown fox junps over the
| azy dog', '\s+');
regexp_split_to_array
{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row

SELECT foo FROM regexp_split_to_table('the quick brown fox', "\s*")
AS foo;

n
f
o
X

(1

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur

at the start or end of the string or immediately after a previous match. This is contrary to the strict

definition of regexp matching that is implemented by the other regexp functions, but is usually the
most convenient behavior in practice. Other software systems such as Perl use similar definitions.

6 rows)

Ther egexp_subst r function returns the substring that matches a POSIX regular expression pat-
tern, or NULL if thereisno match. It hasthesyntax r egexp_substr(stri ng,pattern|[,start
[, N[,fl ags [, subexpr]]]]). pat t er nissearched for in st r i ng, normally from the beginning
of the string, but if the st art parameter is provided then beginning from that character index. If N
is specified then the Nth match of the pattern is returned, otherwise the first match is returned. The
f | ags parameter is an optional text string containing zero or more single-letter flags that change
the function's behavior. Supported flags are described in Table 9.24. For a pattern containing paren-

255

Functions and Operators

thesized subexpressions, subexpr is an integer indicating which subexpression is of interest: the
result isthe substring matching that subexpression. Subexpressions are numbered in the order of their
leading parentheses. When subexpr is omitted or zero, the result is the whole match regardless of
parenthesized subexpressions.

Some examples:

regexp_substr (' number of your street, town zip, FR, '"[*]+, 1, 2)
town zip
regexp_substr (' ABCOEFGH ', "(c..)(...)', 1, 1, "i', 2)
FGH

9.7.3.1. Regular Expression Details

PostgreSQL's regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (RES), as defined in POSIX 1003.2, come in two forms. extended RESs or ERES
(roughly those of egr ep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BRES have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to ARES,
and then describe how BREs differ.

Note

PostgreSQL always initially presumes that aregular expression follows the ARE rules. How-
ever, the more limited ERE or BRE rules can be chosen by prepending an embedded option
to the RE pattern, as described in Section 9.7.3.4. This can be useful for compatibility with
applications that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc.; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by asingle quantifier. Without aquantifier, it matches
amatch for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9.17. The possible quantifiers and their meanings are
shown in Table 9.18.

A constraint matches an empty string, but matches only when specific conditionsare met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.19; some more constraints are described later.

Table 9.17. Regular Expression Atoms

Atom Description

(re) (wherer e isany regular expression) matches a
match for r e, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting
(a“non-capturing” set of parentheses) (AREs
only)

256

Functions and Operators

Atom Description
matches any single character
[char s] abracket expression, matching any one of the
char s (see Section 9.7.3.2 for more detail)
\k (where k is anon-a phanumeric character)

matches that character taken as an ordinary char-
acter, e.g., \ \ matches a backslash character

\c where ¢ is aphanumeric (possibly followed

by other characters) is an escape, see Sec-

tion 9.7.3.3 (AREs only; in EREs and BREs, this
matches c)

{ when followed by a character other than adig-
it, matches the left-brace character { ; when fol-
lowed by adigit, it is the beginning of abound
(see below)

X where x isasingle character with no other sig-
nificance, matches that character

An RE cannot end with abackslash (\).

Note

If you have standard_conforming_stringsturned off, any backslashesyou writein literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table9.18. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{n} a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of
the atom; mcannot exceed n

*? non-greedy version of *

+? non-greedy version of +

?7? non-greedy version of ?

{nm? non-greedy version of { n}

{m}? non-greedy version of { m }

{mn}? non-greedy version of { m n}

The formsusing { . . . } are known as bounds. The numbers mand n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possihilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than thelargest number of matches.
See Section 9.7.3.5 for more detail.

257

Functions and Operators

Note

A quantifier cannot immediately follow another quantifier, e.g., ** isinvaid. A quantifier
cannot begin an expression or subexpression or follow ” or | .

Table 9.19. Regular Expression Constraints

Constraint Description

A matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negative lookahead matches at any point where
no substring matching r e begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching r e ends (AREs only)

(?<'re) negative lookbehind matches at any point where
no substring matching r e ends (AREs only)

L ookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is alist of charactersenclosed in [] . It normally matches any single character
from the list (but see below). If the list begins with *, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g., [0- 9] in ASCIl matches
any decimal digit. It isillegal for two ranges to share an endpoint, e.g., a- c- e. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after », if that is used). To include a
literal -, make it the first or last character, or the second endpoint of a range. To use a literal - as
the first endpoint of arange, encloseitin[. and .] to make it a collating element (see below).
With the exception of these characters, some combinationsusing [(see next paragraphs), and escapes
(AREs only), all other special characters lose their specia significance within a bracket expression.
In particular, \ is not specia when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates asif it were a single character, or a collating-sequence name for either) enclosed in[. and .]
stands for the sequence of characters of that collating element. The sequence is treated as a single
element of the bracket expression's list. This allows a bracket expression containing a multiple-char-
acter collating element to match more than one character, e.g., if the collating sequenceincludesach
collating element, thenthe RE[[. ch.]] * ¢ matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating el ements. This information
describes possible future behavior.

Within abracket expression, acollating element enclosed in[= and =] isan equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If

258

Functions and Operators

there are no other equivalent collating el ements, thetreatment isasif the enclosing delimiterswere| .
and.] .) For example, if o and* arethe membersof an equivalenceclass, then[[=o=]] ,[[="=]],
and [o] areall synonymous. An equivalence class cannot be an endpoint of arange.

Within a bracket expression, the name of acharacter classenclosedin[: and:] standsfor thelist of
all characters belonging to that class. A character class cannot be used as an endpoint of arange. The
POSIX standard defines these character class names: al num(letters and numeric digits), al pha (let-
ters), bl ank (spaceandtab),cnt r | (control characters), di gi t (numeric digits), gr aph (printable
characters except space), | ower (lower-case letters), pri nt (printable characters including space),
punct (punctuation), space (any white space), upper (upper-caseletters), and xdi gi t (hexadec-
imal digits). The behavior of these standard character classesis generally consistent across platforms
for charactersin the 7-bit ASCII set. Whether a given non-ASCI| character is considered to belong to
one of these classes depends on the collation that is used for the regul ar-expression function or oper-
ator (see Section 24.2), or by default on the database's LC_CTYPE locale setting (see Section 24.1).
The classification of non-ASCI| characters can vary across platforms even in similarly-named local es.
(But the C locale never considers any non-ASCII characters to belong to any of these classes.) In
addition to these standard character classes, PostgreSQL defines the wor d character class, which is
the same as al numplus the underscore (_) character, and theasci i character class, which contains
exactly the 7-bit ASCI| set.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[: >:1]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is any character belonging to the wor d character class, that is, any letter, digit, or
underscore. This is an extension, compatible with but not specified by POSIX 1003.2, and should
be used with caution in software intended to be portable to other systems. The constraint escapes
described below are usually preferable; they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapesare special sequencesbeginningwith\ followed by an alphanumeric character. Escapes come
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an a phanumeric character but not constituting avalid escapeisillegal in AREs. In EREs,
there are no escapes: outside a bracket expression, a\ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and ARES.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
actersin REs. They are shown in Table 9.20.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9.22.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.23). For example, ([bc])\ 1 matchesbb or cc but not bc
or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions. The back reference considers only the string characters matched by the referenced subex-
pression, not any constraints contained in it. For example, (~\ d) \ 1 will match 22.

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description
\a aert (bell) character, asin C
\b backspace, asin C

259

Functions and Operators

Escape Description

\B synonym for backslash (\) to help reduce the
need for backs ash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of X, and
whose other bits are al zero

\e the character whose collating-sequence nameis
ESC, or failing that, the character with octal val-
ue033

\ f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\ 't horizontal tab, asin C

\ uwxyz (wherewxyz is exactly four hexadecimal dig-
its) the character whose hexadecimal valueis
Oxwxyz

\ Ust uvwxyz (where st uvwxyz isexactly eight hexadecimal
digits) the character whose hexadecimal valueis
Oxst uvwxyz

\v vertical tab, asinC

\ xhhh (where hhh isany sequence of hexadecimal dig-
its) the character whose hexadecimal valueis
Oxhhh (asingle character no matter how many
hexadecimal digits are used)

\0 the character whose valueis O (the null byte)

\ xy (where xy is exactly two octal digits, and is not
aback reference) the character whose octal val-
ueisOxy

\ xyz (where xyz is exactly three octal digits, and is
not a back reference) the character whose octal
valueisOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to
Unicode code points, for example\ u1234 meansthe character U+1234. For other multibyte encod-
ings, character-entry escapes usually just specify the concatenation of the byte valuesfor the character.
If the escape value does not correspond to any legal character in the database encoding, no error will
be raised, but it will never match any data.

Thecharacter-entry escapes are alwaystaken asordinary characters. For example,\ 135is] inASCII,
but\ 135 does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description

\d matches any digit, like[[: digit:]]

\'s matches any whitespace character, like
[[:space:]]

\'w matches any word character, like[[: wor d:]]

\D matches any non-digit, like[[digit:]]

260

Functions and Operators

Escape Description

\'S matches any non-whitespace character, like
[~ :space:]]

\W matches any non-word character, like
[:word:]]

The class-shorthand escapes also work within bracket expressions, although the definitions shown
above are not quite syntactically valid in that context. For example, [a- c\ d] isequivalentto[a-

cl:digit:]].

Table 9.22. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from)

\'m matches only at the beginning of aword

\M matches only at the end of aword

\y matches only at the beginning or end of aword

\Y matches only at a point that is not the beginning
or end of aword

\Z matches only at the end of the string (see Sec-
tion 9.7.3.5 for how this differsfrom $)

A word is defined as in the specificationof [[: <:]] and[[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description

\'m (where mis anonzero digit) a back reference to
the mith subexpression

\ mn (where mis anonzero digit, and nn is some
more digits, and the decimal value rmn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mmn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indi-
catesan octal escape. A single non-zero digit, not followed by another digit, isawaystaken as
a back reference. A multi-digit sequence not starting with a zero is taken as a back reference
if it comes after a suitable subexpression (i.e., the number isin the legal range for a back ref-
erence), and otherwise istaken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***; | the rest of
the RE istaken asan ARE. (This normally has no effect in PostgreSQL., since RES are assumed to be

261

Functions and Operators

ARES; but it does have an effect if ERE or BRE mode had been specified by the f | ags parameter
to aregex function.) If an RE beginswith * * * =, the rest of the RE istaken to be aliteral string, with
all characters considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alpha-
betic characters) specifies options affecting the rest of the RE. These options override any previously
determined options— in particular, they can override the case-sensitivity behavior implied by aregex
operator, or the f | ags parameter to aregex function. The available option letters are shown in Ta-
ble 9.24. Note that these same option letters are used in the f | ags parameters of regex functions.

Table 9.24. ARE Embedded-Option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator
type)

e rest of RE isan ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Sec-
tion 9.7.3.5)

q rest of RE isaliteral (“quoted”) string, all ordi-
nary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the* * *: director if any).

In addition to the usual (tight) RE syntax, in which al characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a# and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

» awhite-space character or # preceded by \ isretained
» white space or # within a bracket expression is retained
* white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongsto the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#t tt) (wherettt isany text not
containing a)) isacomment, completely ignored. Again, thisisnot allowed between the characters of
multi-character symbols, like (?: . Such comments are more ahistorical artifact than auseful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensionsisavailableif aninitial * * * = director has specified that the user's
input be treated as a literal string rather than as an RE.

262

Functions and Operators

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

» Adding parentheses around an RE does not change its greediness.

* A quantified atom with afixed-repetition quantifier ({ n} or { n} ?) has the same greediness (pos-
sibly none) as the atom itself.

» A quantified atom with other normal quantifiers (including { m n} with mequal to n) is greedy
(prefers longest match).

* A quantified atom with anon-greedy quantifier (including{ m n} ? with mequal to n) isnon-greedy
(prefers shortest match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is aways greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that meansisthat the matchingisdonein
such away that the branch, or whole RE, matchesthe longest or shortest possible substring asa whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpres-
sion is determined on the basis of the greediness attribute of that subexpression, with subexpressions
starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG(' XY1234Z', ' Y*([0-9]{1,3})'):

Result: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

In the first case, the RE as awhole is greedy because Y* is greedy. It can match beginning at the Y,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as awhole is non-greedy because Y* ? is non-greedy.
It can match beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1.
The subexpression [0- 9] { 1, 3} isgreedy but it cannot change the decision as to the overall match
length; so it isforced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed
to “eat” relative to each other.

The quantifiers{ 1, 1} and{ 1, 1} ? can be used to force greediness or non-greediness, respectively,
on a subexpression or awhole RE. Thisis useful when you need the whole RE to have a greediness
attribute different from what's deduced from its elements. As an example, suppose that we are trying
to separate a string containing some digitsinto the digits and the parts before and after them. We might
try to do that like this:

263

Functions and Operators

SELECT regexp_mat ch(' abc01234xyz', ' (.*)(\d+)(.*)");
Resul t: {abc0123, 4, xyz}

That didn't work: thefirst . * isgreedy so it “eats” as much asit can, leaving the\ d+ to match at the
last possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ch(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as awhole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_match('abc01234xyz', ' (?:(.*?2)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flex-
ibility in handling variable-length patterns.

When deciding what isalonger or shorter match, match lengths are measured in characters, not collat-
ing elements. An empty string isconsidered longer than no match at all. For example: bb* matchesthe
three middle characters of abbbc; (week| wee) (ni ght | kni ght s) matches al ten characters
of weekni ght s; when (. *) . * ismatched against abc the parenthesized subexpression matches
all three characters; and when (a*) * ismatched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect is much as if al case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., X becomes|[xX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes[xX] and [*x] becomes|[*xX] .

If newline-sensitive matching is specified, . and bracket expressions using * will never match the
newline character (so that matcheswill not crosslines unlessthe RE explicitly includes anewline) and
A and $ will match the empty string after and before anewline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes\ Aand\ Z continueto match beginning
or end of string only. Also, the character class shorthands\ D and \ Wwill match a newline regardless
of thismode. (Before PostgreSQL 14, they did not match newlines when in newline-sensitive mode.
Write[M :digit:]] or[*[:word:]] togettheold behavior.)

If partial newline-sensitive matching is specified, this affects. and bracket expressions as with new-
line-sensitive matching, but not » and $.

If inverse partial newline-sensitive matchingis specified, thisaffects” and $ aswith newline-sensitive
matching, but not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREsisthat \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which isillegal or
has undefined or unspecified effectsin POSIX EREs; the * * * syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack of spe-
cial treatment for atrailing newline, the addition of complemented bracket expressions to the things
affected by newline-sensitive matching, the restrictions on parentheses and back references in looka-

264

Functions and Operators

head/l ookbehind constraints, and the longest/shortest-match (rather than first-match) matching seman-
tics.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, | , +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are\ { and\ }, with { and } by
themselves ordinary characters. The parentheses for nested subexpressionsare\ (and\) , with (and
) by themselves ordinary characters. * is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and * is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading).
Finally, single-digit back references are available, and \ < and \ > are synonymsfor [[: <:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.7.3.8. Differences from SQL Standard and XQuery

Since SQL:2008, the SQL standard includes regular expression operators and functions that performs
pattern matching according to the XQuery regular expression standard:

. LI KE_REGEX
« OCCURRENCES REGEX
« POSI TI ON_REGEX

« SUBSTRI NG REGEX

- TRANSLATE_REGEX

PostgreSQL does not currently implement these operators and functions. Y ou can get approximately
equivalent functionality in each case as shown in Table 9.25. (Various optional clauses on both sides
have been omitted in thistable.)

Table 9.25. Regular Expression Functions Equivalencies

SQL standard PostgreSQL

string LI KE_REGEX pattern regexp_like(string, pattern) or
string ~ pattern

OCCURRENCES_REGEX(pattern IN regexp_count (string, pattern)

string)

PCSI TI ON_REGEX(pattern I N regexp_instr(string, pattern)

string)

SUBSTRI NG REGEX(pattern I N regexp_substr(string, pattern)

string)

TRANSLATE REGEX(pattern IN regexp_replace(string, pattern,

string WTH repl acenent) repl acenent)

Regular expression functions similar to those provided by PostgreSQL are also available in a number
of other SQL implementations, whereas the SQL -standard functions are not as widely implemented.
Some of the details of the regular expression syntax will likely differ in each implementation.

The SQL -standard operators and functions use XQuery regular expressions, which are quite close to
the ARE syntax described above. Notable differences between the existing POSI X -based regul ar-ex-
pression feature and XQuery regular expressions include:

» XQuery character class subtraction is not supported. An example of thisfeature is using the follow-
ing to match only English consonants. [a- z- [aei ou]] .

e XQuery character class shorthands\ ¢,\ C,\'i ,and\ | are not supported.

265

Functions and Operators

e XQuery character classelementsusing\ p{ Uni codePr opert y} ortheinverse\ P{ Uni code-
Pr operty} arenot supported.

» POSIX interprets character classes such as\ w (see Table 9.21) according to the prevailing locale
(which you can control by attaching a COLLATE clause to the operator or function). X Query spec-
ifies these classes by reference to Unicode character properties, so equivalent behavior is obtained
only with alocale that follows the Unicode rules.

» The SQL standard (not XQuery itself) attemptsto cater for more variants of “newling” than POSIX
does. The newline-sensitive matching options described above consider only ASCII NL (A n) to be
anewline, but SQL would have ustreat CR (\ r), CRLF (\ r\ n) (a Windows-style newline), and
some Unicode-only characterslike LINE SEPARATOR (U+2028) as newlines as well. Notably, .
and \ s should count \ r \ n as one character not two according to SQL.

» Of the character-entry escapes described in Table 9.20, XQuery supportsonly \ n,\r,and\ t .
* XQuery does not support the[: name:] syntax for character classes within bracket expressions.

» XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes de-
scribed in Table 9.22.

» The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.

» Theregular expression flag letters defined by XQuery are related to but not the same as the option
lettersfor POSIX (Table 9.24). Whilethei and g options behave the same, others do not:

e XQuery'ss (allow dot to match newline) and m(allow * and $ to match at newlines) flags provide
access to the same behaviors as POSIX's n, p and w flags, but they do not match the behavior
of POSIX's s and mflags. Note in particular that dot-matches-newline is the default behavior in
POSIX but not XQuery.

» XQuery's x (ignore whitespace in pattern) flag is noticeably different from POSIX's expand-
ed-mode flag. POSIX's x flag also allows # to begin a comment in the pattern, and POSIX will
not ignore a whitespace character after a backslash.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of toolsfor converting various datatypes
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.26 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is atemplate that
defines the output or input format.

Table 9.26. For matting Functions

Function
Description
Example(s)

to_char (timestanp,text) - text

to_char (tinestanp with time zone,text) - text
Converts time stamp to string according to the given format.
to_char(timestanp '2002-04-20 17:31:12.66', 'HH12: M:SS') -
05: 31: 12

to_char (interval,text) - text
Convertsinterval to string according to the given format.

to_char(interval '15h 2m 12s', 'HHR4:M:SS') - 15:02: 12

to_char (nuneric_type,text) - text

266

Functions and Operators

Function
Description
Example(s)
Converts number to string according to the given format; available for i nt eger , bi g-
i nt,nuneric,real,doubl e precision.
to_char (125, '999') - 125
to_char(125.8::real, '999D9') - 125.8

to_char(-125.8, '999D99S') - 125. 80-

to _date(text,text) - date
Converts string to date according to the given format.

to_date(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05

to_nunber (text,text) - nuneric
Converts string to numeric according to the given format.

to_nunber (' 12,454.8-"', '99@X@99D9S') - -12454.8

to_timestanp (text,text) -timestanp with tine zone
Converts string to time stamp according to the given format. (Seeasot o_ti mest am
p(doubl e precision) inTable9.33)
to_tinmestanp(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05
00: 00: 00- 05

Tip
to_timestanp andto_dat e exist to handle input formats that cannot be converted by
simple casting. For most standard date/time formats, simply casting the source string to the

required data type works, and ismuch easier. Similarly, t o_nunber isunnecessary for stan-
dard numeric representations.

Inat o_char output template string, there are certain patterns that are recognized and replaced with
appropriatel y-formatted data based on the given value. Any text that is not atemplate patternissimply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the valuesto be supplied by the input data string. If there are charactersin the template string
that are not templ ate patterns, the corresponding characters in the input data string are smply skipped
over (whether or not they are equal to the template string characters).

Table 9.27 shows the template patterns available for formatting date and time values.

Table 9.27. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000-999999)
FF1 tenth of second (0-9)

FF2 hundredth of second (00-99)
FF3 millisecond (000-999)

267

Functions and Operators

Pattern Description

FF4 tenth of amillisecond (0000—9999)

FF5 hundredth of a millisecond (00000—99999)
FF6 microsecond (000000-999999)

SSSS, SSSSS seconds past midnight (0-86399)

AM am PMor pm

meridiem indicator (without periods)

AM,a.m,P.M orp.m

meridiem indicator (with periods)

Y, YYY

year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY 1SO 8601 week-numbering year (4 or more dig-
its)

1YY last 3 digits of 1SO 8601 week-numbering year

Y last 2 digits of 1SO 8601 week-numbering year

I last digit of 1SO 8601 week-numbering year

BC, bc, ADor ad eraindicator (without periods)

B.C ,b.c.,A D ora.d.

eraindicator (with periods)

MONTH

full upper case month name (blank-padded to 9
chars)

Mont h full capitalized month name (blank-padded to 9
chars)

nmont h full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 charsin
English, localized lengths vary)

Mon abbreviated capitalized month name (3 charsin
English, localized lengths vary)

non abbreviated lower case month name (3 charsin
English, localized lengths vary)

WY month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 charsin
English, localized lengths vary)

Dy abbreviated capitalized day name (3 charsin
English, localized lengths vary)

dy abbreviated lower case day name (3 charsin
English, localized lengths vary)

DDD day of year (001-366)

268

Functions and Operators

Pattern Description

| DDD day of 1SO 8601 week-numbering year (001—
371; day 1 of the year is Monday of the first 1ISO
week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

I D SO 8601 day of the week, Monday (1) to Sun-
day (7)

w week of month (1-5) (the first week starts on the
first day of the month)

VWV week number of year (1-53) (the first week
starts on the first day of the year)

W week number of 1SO 8601 week-numbering year
(01-53; thefirst Thursday of the year isin week
1)

cC century (2 digits) (the twenty-first century starts
on 2001-01-01)

J Julian Date (integer days since November 24,
4714 BC at local midnight; see Section B.7)

Q quarter

RM month in upper case Roman numerals (1-XI1;
I=January)

rm month in lower case Roman numerals (i—Xii;
i=January)

TZ upper case time-zone abbreviation (only support-
edint o_char)

tz lower case time-zone abbreviation (only support-
edint o_char)

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (only supported in
to_char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMvbnt h isthe
Mont h pattern with the FMmodifier. Table 9.28 showsthe modifier patterns for date/time formatting.

Table 9.28. Template Pattern M odifiersfor Date/Time Formatting

Modifier Description Example

FMprefix fill mode (suppressleading ze- |FMVbnt h
roes and padding blanks)

TH suffix upper case ordinal number suf- |DDTH, e.g., 12TH
fix

t h suffix lower case ordinal number suf- |DDt h, eg., 12t h
fix

FX prefix fixed format global option (see |FX Month DD Day
usage notes)

TMprefix translation mode (use localized | TMVbnt h
day and month names based on
Ic_time)

269

Functions and Operators

M odifier Description Example
SP suffix spell mode (not implemented) | DDSP

Usage notes for date/time formatting:

» FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of apattern be fixed-width. In PostgreSQL, FMmaodifies only the next specification, whilein Oracle
FMaffects all subsequent specifications, and repeated FMmodifierstoggle fill mode on and off.

TMsuppresses trailing blanks whether or not FMis specified.

e to_tinestanpandt o_dat e ignoreletter casein theinput; so for example MON, Mon, and non
all accept the same strings. When using the TMmodifier, case-folding is done according to the rules
of the function'sinput collation (see Section 24.2).

e to_tinestanp andto_dat e skip multiple blank spaces at the beginning of the input string
and around date and time values unless the FX option is used. For example, t 0_ti mest am
p(' 2000 JUN , "YYYY MON) andto_tinmestanp(' 2000 - JUN, 'YYYY-
MON') work, butto_ti nmestanp(' 2000 JUN , " FXYYYY MON) returnsan error
becauset 0_ti nest anp expects only a single space. FX must be specified as the first item in
the template.

» A separator (a space or non-letter/non-digit character) in the template string of t o_t i mest anp
andt o_dat e matchesany single separator in theinput string or is skipped, unlessthe FX optionis
used. For example, t o_ti mestanp(' 2000JUN , ' YYYY///MXN) andto_tinestam
p(' 2000/ JUN , 'YYYY MON) work, butto_timestanp('2000//JUN, 'YYYY/
MON') returns an error because the number of separators in the input string exceeds the number
of separators in the template.

If FX is specified, a separator in the template string matches exactly one character in the input
string. But note that the input string character is not required to be the same as the separator from
the template string. For example, t o_t i mest anp(' 2000/ JUN' , ' FXYYYY MON) works,
butto_timestanp(' 2000/ JUN , ' FXYYYY MON) returnsan error because the second
space in the template string consumes the letter J from the input string.

» A TZHtemplate pattern can match asigned number. Without the FX option, minussigns may beam-
biguous, and could be interpreted as a separator. Thisambiguity isresolved as follows: If the num-
ber of separators before TZH in the template string is less than the number of separators before the
minussignintheinput string, the minussignisinterpreted as part of TZH. Otherwise, theminussign
is considered to be a separator between values. For example, t o_t i nest anp(' 2000 -10',
"YYYY TZH) matches- 10 to TZH, butt o_ti mestanp(' 2000 -10', 'YYYY TzZH)
matches 10 to TZH.

* Ordinary textisalowedint o_char templatesand will be output literally. Y ou can put asubstring
in double quotes to force it to be interpreted as literal text even if it contains template patterns.
For example, in' "Hel l o Year "YYYY', the YYYY will be replaced by the year data, but
thesingle Y in Year will not be. Int o_dat e, t o_nunber,andto_ti mest anp, literal text
and double-quoted strings result in skipping the number of characters contained in the string; for
example" XX" skipstwo input characters (whether or not they are XX).

Tip

Prior to PostgreSQL 12, it was possible to skip arbitrary text in the input string using non-
letter or non-digit characters. For example, t o_t i mest anp(' 2000y6nid’, 'yyyy-
MVt DD) used to work. Now you can only use letter characters for this purpose. For ex-
ample, to_ti nestanp(' 2000y6mld’, 'yyyytMVDDt') andto_ti nestam
p(' 2000y6mld', 'yyyy"y"MVM m'DD'd""') skipy,mandd.

270

Functions and Operators

If you want to have a double quote in the output you must precede it with a backslash, for example
"\"YYYY Mont h\"' . Backdashes are not otherwise special outside of double-quoted strings.
Within a double-quoted string, a backslash causes the next character to be taken literally, whatever
itis (but this has no special effect unless the next character is a double quote or another backslash).

Into_timestanp andto_dat e, if the year format specification is less than four digits, e.g.,
YYY, and the supplied year isless than four digits, the year will be adjusted to be nearest to the year
2020, e.g., 95 becomes 1995.

Into_timestanpandto_dat e, negative years are treated as signifying BC. If you write both
anegative year and an explicit BCfield, you get AD again. Aninput of year zero istreated as 1 BC.

Into_timestanp and to_dat e, the YYYY conversion has a restriction when process-
ing years with more than 4 digits. You must use some non-digit character or template after
YYYY, otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date(' 200001130', ' YYYYMVDD) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like t o_dat e(' 20000- 1130', ' YYYY-MVDD) or
to_dat e(' 20000Nov30', ' YYYYMONDD).

Into_timestanp andto_dat e, the CC (century) field is accepted but ignored if there is a
YYY, YYYY or Y, YYY field. If CCisused with YY or Y then the result is computed as that year
in the specified century. If the century is specified but the year is not, the first year of the century
is assumed.

Into_timestanpandt o_dat e, weekday names or numbers (DAY, D, and related field types)
are accepted but are ignored for purposes of computing the result. The same s true for quarter (Q
fields.

Into_tinmestanpandt o_dat e, an SO 8601 week-numbering date (as distinct from a Grego-
rian date) can be specified in one of two ways:

« Year, week number, and weekday: for examplet o_dat e(' 2006-42-4"', '"1YYY-IW
| D') returnsthe date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

e Year and day of year: for examplet o_dat e(' 2006-291', '1YYY-1DDD) alsoreturns
2006- 10- 19.

Attempting to enter a date using a mixture of 1SO 8601 week-numbering fields and Gregorian date
fieldsis nonsensical, and will cause an error. In the context of an SO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year,
the 1SO week has no meaning.

Caution

Whilet o_dat e will reject a mixture of Gregorian and | SO week-numbering date fields,
t o_char will not, since output format specificationslike YYYY- MM DD (| YYY- | DDD)

can be useful. But avoid writing something like | YYY- MVt DD; that would yield surprising
results near the start of the year. (See Section 9.9.1 for more information.)

Into_ti mest anp, millisecond (MS) or microsecond (US) fields are used as the seconds digits
after the decimal point. For examplet o_ti nestanp(' 12.3', 'SS. M5') isnot 3 millisec-
onds, but 300, because the conversion treats it as 12 + 0.3 seconds. So, for the format SS. M, the
input values 12. 3, 12. 30, and 12. 300 specify the same number of milliseconds. To get three
milliseconds, one must write 12. 003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_tinestanp(' 15:12:02. 020.001230',
"HH24: M : SS. M5. US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 mi-
croseconds = 2.021230 seconds.

271

Functions and Operators

eto char(..., 'ID)'s day of the week numbering matches the extract (i sodow
from ...) function, but to_char(..., "D)'s does not match extract (dow
from...) 'sday numbering.

e to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero
hours and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed
23inani nterval vaue

Table 9.29 shows the template patterns available for formatting numeric values.

Table 9.29. Template Patternsfor Numeric For matting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if in-
significant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (useslocal€)

D decimal point (useslocal€)

G group separator (useslocale)

M minus sign in specified position (if number < Q)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

THorth ordinal number suffix

\% shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

» 0 specifiesadigit position that will always be printed, even if it contains a leading/trailing zero. 9
also specifies a digit position, but if it is aleading zero then it will be replaced by a space, while
if itisatrailing zero and fill mode is specified then it will be deleted. (For t o_nunber (), these
two pattern characters are equivalent.)

« If the format provides fewer fractional digits than the number being formatted, t o_char () will
round the number to the specified number of fractional digits.

» The pattern characters S, L, D, and Grepresent the sign, currency symbol, decimal point, and thou-
sands separator characters defined by the current locale (seelc_monetary and Ic_numeric). The pat-
tern characters period and comma represent those exact characters, with the meanings of decimal
point and thousands separator, regardless of locale.

« If no explicit provision is made for asignint o_char () 's pattern, one column will be reserved
for thesign, and it will be anchored to (appear just left of) the number. If S appearsjust |eft of some
9's, it will likewise be anchored to the number.

» Asignformatted using SG, PL, or M isnot anchored to the number; for example,t o_char (- 12,
"M 9999') produces' - 12' butto_char(-12, 'S9999') produces' -12'.(The
Oracleimplementation doesnot allow theuse of M before 9, but rather requiresthat 9 precedeM .)

272

Functions and Operators

» THdoes not convert values less than zero and does not convert fractional numbers.
» PL, SG and TH are PostgreSQL extensions.

* Int o_nunber, if non-datatemplate patterns such as L or TH are used, the corresponding number
of input characters are skipped, whether or not they match the template pattern, unlessthey are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-
data characters.

e Vwitht o_char multiplies the input values by 10" n, where n is the number of digits following
V.V witht o_nunber dividesin asimilar manner.t o_char andt o_nunber do not support
the use of V combined with adecimal point (e.g., 99. 9V99 isnot alowed).

» EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format string
(eg., 9. 99EEEE isavalid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FMB9. 99
isthe 99. 99 pattern with the FMmodifier. Table 9.30 shows the modifier patterns for numeric for-
matting.

Table 9.30. Template Pattern M odifiersfor Numeric Formatting

M odifier Description Example

FMprefix fill mode (suppresstrailing ze- |FMB9. 99
roes and padding blanks)

TH suffix upper case ordinal number suf- |999TH
fix

t h suffix lower case ordinal number suf- |999t h
fix

Table 9.31 shows some examples of the use of thet o_char function.

Table9.31.t o_char Examples

Expression Result

to_char (current tinestanp, 'Tuesday , 06 05:39:18'
'Day, DD HH12:M:SS')

to_char(current timestanp, 'FM ' Tuesday, 6 05:39:18'
Day, FMDD HH12:M:SS')

to_char(-0.1, '99.99") Y- 10

to_char(-0.1, 'FM.99") BT

to char(-0.1, 'FMO0.99") '-0.1

to _char(0.1, '0.9") " 0.1

to_char (12, '9990999.9") ' 0012. 0

to_char (12, 'FWMP990999.9') '0012."

to_char (485, '999') ' 485

to_char (-485, '999') ' -485'

to_char (485, '9 9 9') ' 485

to_char (1485, '9,999") ' 1,485

to_char (1485, '9(99') ' 1 485
to_char(148.5, '999.999") ' 148. 500

273

Functions and Operators

Expression Result
to_char(148.5, 'FMP99.999') ' 148. 5'
to_char(148.5, 'FMP99.990") ' 148. 500

to _char(148.5, '999D999') ' 148, 500'
to_char(3148.5, '9(099D999"') ' 3 148, 500’
to_char (-485, '999S) ' 485-"
to_char(-485, '999M ") ' 485-"

to_char (485, '999M ") '485

to_char (485, 'FMBO9M ') ' 485’

to_char (485, 'PL999') ' +485'

to_char (485, 'S@99') ' +485'
to_char(-485, 'S®99') ' - 485

to_char (-485, '9S®X9') ' 4-85'

to_char (-485, '999PR) ' <485>

to_char (485, 'L999') ' DM 485’

to _char (485, 'RN) ' CDLXXXV'
to_char (485, ' FMRN) " CDLXXXV'
to_char (5.2, 'FMRN) 'V

to_char (482, '999th') ' 482nd'

to_char (485, '"Good num ' Good nunber: 485
ber:"999")

to_char (485. 8, "Pre: 485 Post: .800
""Pre:"999" Post:" .999")

to_char (12, '99Vv999') ' 12000
to_char(12.4, '99Vv999') ' 12400
to_char(12.45, '99V9') ' 125

to_char (0. 0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions and Operators

Table 9.33 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9.32 illustrates the behaviors of the basic arithmetic operators (+,
* , etc.). For formatting functions, refer to Section 9.8. Y ou should be familiar with the background
information on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types.
Dates and timestamps (with or without time zone) are all comparable, while times (with or without
time zone) and intervals can only be compared to other values of the same datatype. When comparing
a timestamp without time zone to a timestamp with time zone, the former value is assumed to be
given in the time zone specified by the TimeZone configuration parameter, and is rotated to UTC for
comparison to the latter value (whichisalready in UTC internally). Similarly, adate value is assumed
to represent midnight in the Ti meZone zone when comparing it to a timestamp.

All the functions and operators described below that taket i me ort i mest anp inputsactually come
intwo variants: onethat takesti me with tine zoneortinestanp with tine zone,and
onethattakesti me wi thout tine zoneorti mestanp w thout time zone.Forbrevity,
these variants are not shown separately. Also, the + and * operators come in commutative pairs (for
exampleboth dat e +i nt eger andi nt eger + dat e); we show only one of each such pair.

274

Functions and Operators

Table 9.32. Date/Time Operators

Operator
Description
Example(s)

date +integer - date
Add anumber of daysto adate

date '2001-09-28" + 7 - 2001-10-05

date+interval - tinmestanp
Add aninterval to adate

date '2001-09-28" + interval '1 hour' - 2001-09-28 01:00: 00

date+time - tinmestanp
Add atime-of-day to adate

date '2001-09-28" + tine '03:00" - 2001-09-28 03:00: 00

interval +interval - interval
Add intervals

interval '1 day' + interval "1 hour' - 1 day 01:00: 00

timestanp +interval - tinestanp
Add an interval to atimestamp
ti mestanp ' 2001-09-28 01:00' + interval '23 hours' -
2001- 09- 29 00: 00: 00

time+interval - tine
Add an interval to atime

time '01:00" + interval '3 hours' - 04:00:00

-interval = interval
Negate an interval

- interval '23 hours' - -23:00:00

date - date - i nteger
Subtract dates, producing the number of days elapsed

date '2001-10-01" - date '2001-09-28 -3

date- integer - date
Subtract a number of days from a date

date '2001-10-01'" - 7 - 2001-09-24

date- interval - tinmestanp
Subtract an interval from a date

date '2001-09-28'" - interval '1l hour' - 2001-09-27 23:00: 00

tine-tinme - interval
Subtract times

time '05:00" - time '03:00" - 02:00:00

time-interval - tine
Subtract an interval from atime

time '05:00" - interval '2 hours' - 03:00:00

timestanp- interval - tinmestanp
Subtract an interval from atimestamp

275

Functions and Operators

Operator
Description
Example(s)
ti mestanp ' 2001-09-28 23: 00" - interval '23 hours' -
2001- 09- 28 00: 00: 00
interval - interval - interval
Subtract intervals
interval '1 day' - interval '1 hour' - 1 day -01:00: 00

timestanp- timestanp - interval
Subtract timestamps (converting 24-hour intervals into days, similarly toj usti -
fy_hours())
ti mestanp ' 2001-09-29 03: 00" - tinmestanp '2001-07-27 12: 00

- 63 days 15:00: 00

i nterval * doubl e precision - interval
Multiply aninterval by a scalar

interval '1 second' * 900 - 00: 15: 00
interval '1 day' * 21 - 21 days
interval "1 hour' * 3.5 - 03:30:00

i nterval / doubl e precision - interval
Divide an interval by ascalar

interval "1 hour' / 1.5 - 00:40: 00

Table 9.33. Date/Time Functions

Function
Description
Example(s)

age (timestanp,tinestanp) - i nterval
Subtract arguments, producing a“symbolic” result that uses years and months, rather
than just days
age(tinestanp ' 2001-04-10', tinestanp '1957-06-13") - 43
years 9 nons 27 days

age (timestanp) - i nterval
Subtract argument from cur r ent _dat e (at midnight)

age(timestamp '1957-06-13"'") - 62 years 6 nons 10 days

clock timestanp () - tinmestanp with tine zone
Current date and time (changes during statement execution); see Section 9.9.5

clock_timestanp() - 2019-12-23 14: 39: 53. 662522- 05

current _date - date
Current date; see Section 9.9.5

current _date - 2019-12-23

current _time -time with tine zone
Current time of day; see Section 9.9.5

current _tinme - 14: 39: 53. 662522- 05

current _time(integer) -time with tinme zone
Current time of day, with limited precision; see Section 9.9.5

276

Functions and Operators

Function
Description
Example(s)

current _tinme(2) - 14:39:53.66-05

current _tinmestanp - tinmestanp with tine zone
Current date and time (start of current transaction); see Section 9.9.5

current _timestanp - 2019-12-23 14: 39: 53. 662522- 05

current _timestanp(integer) -tinmestanp with tine zone

Current date and time (start of current transaction), with limited precision; see Sec-
tion 9.9.5

current _timestanp(0) - 2019-12-23 14:39:53-05

date_add (timestanp with tine zone,interval [,text]) - tinestanp
with time zone
Addaninterval toatinmestanp with time zone, computing times of day
and daylight-savings adjustments according to the time zone named by the third argu-
ment, or the current TimeZone setting if that is omitted. The form with two argumentsis
equivaenttothet i mestanp with tinme zone +interval operator.
dat e_add(' 2021- 10-31 00: 00: 00+02' : :ti mestanptz, '1

day'::interval, 'Europe/Warsaw) - 2021-10-31 23: 00: 00+00

date_bin(interval,tinmestanp,tinmestanp) - ti nestanp
Bin input into specified interval aligned with specified origin; see Section 9.9.3
date_bin('15 mnutes', tinestanp '2001-02-16 20: 38: 40",
ti mestanp ' 2001-02-16 20:05:00') - 2001-02-16 20:35: 00

date_part (text,timestanp) - doubl e precision
Get timestamp subfield (equivalent to ext r act); see Section 9.9.1

date_part (' hour', tinmestanp '2001-02-16 20:38:40') - 20

date _part (text,interval) - doubl e precision
Get interval subfield (equivalent to ext r act); see Section 9.9.1

date_part('nonth', interval '2 years 3 nonths') - 3

date_subtract (tinmestanp with tine zone,interval [,text]) - tine-
stanp with time zone
Subtract ani nt er val fromatimestanp with time zone, computing times of
day and daylight-savings adjustments according to the time zone named by the third ar-
gument, or the current TimeZone setting if that is omitted. The form with two arguments
isequivalenttotheti mestanp with tine zone- i nterval operator.
dat e_subtract (' 2021-11-01 00: 00: 00+01' : : ti mestanptz, '1

day'::interval, 'Europe/Warsaw) - 2021-10-30 22: 00: 00+00

date_trunc (text,timestanp) - ti mestanp
Truncate to specified precision; see Section 9.9.2

date_trunc(' hour', timestanp '2001-02-16 20:38:40") -
2001- 02-16 20: 00: 00

date trunc (text,tinmestanp with tinme zone,text) -tinestanp with
time zone

Truncate to specified precision in the specified time zone; see Section 9.9.2
date_trunc('day', tinestanptz '2001-02-16 20: 38: 40+00',
"Australial/ Sydney') - 2001-02-16 13: 00: 00+00

date trunc (text,interval) - interval

277

Functions and Operators

Function
Description
Example(s)
Truncate to specified precision; see Section 9.9.2
date_trunc(' hour', interval '2 days 3 hours 40 nminutes') - 2

days 03:00: 00

extract (fieldfromtimestanp) - nuneric
Get timestamp subfield; see Section 9.9.1

extract (hour fromtinestanp '2001-02-16 20:38:40') - 20

extract (fieldfrominterval) - nunmeric
Get interval subfield; see Section 9.9.1

extract(month frominterval '2 years 3 nonths') - 3

isfinite(date) - bool ean
Test for finite date (not +/-infinity)

isfinite(date '2001-02-16") - true

isfinite(tinestanp) - bool ean
Test for finite timestamp (not +/-infinity)

isfinite(timestanp '"infinity') - fal se

isfinite(interval) - bool ean
Test for finiteinterval (currently always true)

isfinite(interval "4 hours') - true

justify days (interval) - interval
Adjust interval, converting 30-day time periods to months

justify days(interval '1 year 65 days') - 1 year 2 nmons 5
days

justify hours (interval) - interval
Adjust interval, converting 24-hour time periods to days

justify hours(interval '50 hours 10 mnutes') - 2 days
02: 10: 00

justify_ interval (interval) - interval
Adjustinterval usingj usti fy_days andj usti fy_hour s, with additional sign ad-
justments
justify interval (interval "1 non -1 hour') - 29 days
23: 00: 00

localtine - tinme
Current time of day; see Section 9.9.5

[ocal time - 14: 39: 53. 662522

localtine(integer) »tine
Current time of day, with limited precision; see Section 9.9.5
localtine(0) - 14:39:53

| ocal tinestanp - ti nestanp
Current date and time (start of current transaction); see Section 9.9.5

| ocal timestanp - 2019-12-23 14: 39: 53. 662522

| ocal tinestanp (i nteger) - tinestanp

278

Functions and Operators

Function
Description
Example(s)

Current date and time (start of current transaction), with limited precision; see Sec-
tion 9.9.5

[ocal tinestanp(2) - 2019-12-23 14:39:53. 66

make _date (year int,nonthint,dayint) - date
Create date from year, month and day fields (negative years signify BC)

make date(2013, 7, 15) - 2013-07-15

make _interval ([yearsint [,nmonthsint [,weeksint [,daysint [,hoursint

[,mnsint [,secs double precision]]]]l]]) - i nterval

Createinterva from years, months, weeks, days, hours, minutes and seconds fields, each

of which can default to zero
meke_i nterval (days => 10) - 10 days

make_tinme (hour int,mnint,secdouble precision) - tine
Create time from hour, minute and seconds fields
make_tine(8, 15, 23.5) - 08:15:23.5

make_ti nmestanp (year i nt,nonthint,dayint,hour int,mnint,secdouble

precision) - tinestanp

Create timestamp from year, month, day, hour, minute and seconds fields (negative years

signify BC)
make tinestanp(2013, 7, 15, 8, 15, 23.5) - 2013-07-15
08: 15:23.5

make_tinmestanptz (year int,nmonthint,dayint,hour int,mnint,secdou-

ble precision[,ti mezonetext]) -tinestanp with time zone

Create timestamp with time zone from year, month, day, hour, minute and seconds fields
(negative years signify BC). If t i mezone isnot specified, the current time zone is used;

the exampl es assume the session time zoneis Eur ope/ London

make_ti nestanptz(2013, 7, 15, 8, 15, 23.5) - 2013-07-15
08:15: 23. 5+01

make tinestanptz(2013, 7, 15, 8, 15, 23.5, 'Anmerical/ New Y-

ork') - 2013-07-15 13:15:23.5+01

now() - tinmestanp with tine zone
Current date and time (start of current transaction); see Section 9.9.5

now() - 2019-12-23 14:39:53. 662522- 05

statenent _tinmestanp() -tinestanp with tinme zone
Current date and time (start of current statement); see Section 9.9.5

statenment _tinmestanp() - 2019-12-23 14: 39: 53. 662522- 05

ti meof day () - text
Current date and time (likecl ock_t i mest anp, but asat ext string); see Sec-
tion 9.9.5

ti meof day() — Mon Dec 23 14:39: 53. 662522 2019 EST

transaction_timestanp () - tinestanp with tine zone
Current date and time (start of current transaction); see Section 9.9.5

transaction_ti nmestanp() - 2019-12-23 14:39: 53. 662522- 05

to_tinmestanp (double precision) - tinestanp with tine zone

279

Functions and Operators

Function
Description
Example(s)
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time
zone

to_tinmestanp(1284352323) - 2010-09-13 04: 32: 03+00

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, |ength2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval. When a pair of valuesis provided, either the start or
the end can be written first; OVERLAPS automatically takes the earlier value of the pair as the start.
Each time period is considered to represent the half-open interval st art <=t i nme < end, unless
st art and end areequal in which caseit representsthat single timeinstant. This means for instance
that two time periods with only an endpoint in common do not overlap.

SELECT (DATE ' 2001-02-16'
(DATE ' 2001- 10- 30'

Result: true

SELECT (DATE ' 2001-02-16'
(DATE ' 2001- 10- 30'

Result: fal se

SELECT (DATE ' 2001- 10-29'
(DATE ' 2001- 10- 30'

Result: fal se

SELECT (DATE ' 2001- 10- 30’
(DATE ' 2001- 10- 30'

Result: true

DATE ' 2001-12-21") OVERLAPS
DATE ' 2002- 10- 30");

| NTERVAL ' 100 days') OVERLAPS
DATE ' 2002- 10- 30");

DATE ' 2001- 10- 30") OVERLAPS
DATE ' 2001-10-31');

DATE ' 2001- 10- 30") OVERLAPS
DATE ' 2001-10-31');

When adding an i nt er val vaueto (or subtracting ani nt er val valuefrom) ati mest anp or
timestanp with time zone value, the months, days, and microsecondsfields of thei nt er -
val vaue are handled in turn. First, a nonzero months field advances or decrements the date of the
timestamp by the indicated number of months, keeping the day of month the same unlessit would be
past the end of the new month, in which case the last day of that month is used. (For example, March
31 plus 1 month becomes April 30, but March 31 plus 2 months becomes May 31.) Then the daysfield
advances or decrements the date of the timestamp by the indicated number of days. In both these steps
the local time of day is kept the same. Finaly, if there is a nonzero microseconds field, it is added
or subtracted literaly. When doing arithmeticon ati nestanp with tinme zone vaueina
time zone that recognizes DST, this means that adding or subtracting (say) i nterval '1 day'
does not necessarily have the same result as adding or subtracting i nt erval ' 24 hours' . For
example, with the session time zone set to Aner i ca/ Denver :

SELECT tinestanp with time zone '2005-04-02 12:00: 00-07'" + interval
"1 day';

Resul t: 2005-04-03 12: 00: 00- 06

SELECT tinestanp with time zone '2005-04-02 12:00: 00-07' + interval
'24 hours';

Resul t: 2005- 04-03 13: 00: 00- 06

This happens because an hour was skipped due to a change in daylight saving time at 2005- 04- 03
02: 00: 00 intime zone Aner i ca/ Denver .

280

Functions and Operators

9.9.1.

Note there can be ambiguity in the nont hs field returned by age because different months have
different numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates
when calculating partial months. For example, age(' 2004- 06-01', ' 2004-04-30') uses
April toyield1 non 1 day, whileusing May would yield1 non 2 days because May has
31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction is to convert each value to a number of seconds using EXTRACT(EPOCH FROM . . .),
then subtract the results; this produces the number of seconds between the two values. Thiswill adjust
for the number of daysin each month, timezone changes, and daylight saving time adjustments. Sub-
traction of date or timestamp values with the “- " operator returns the number of days (24-hours) and
hours/minutes/seconds between the values, making the same adjustments. The age function returns
years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and then ad-
justing for negative field values. The following queriesillustrate the differences in these approaches.
The sample results were produced witht i mnezone = ' US/ East er n' ; thereisadaylight saving
time change between the two dates used:

SELECT EXTRACT(EPOCH FROM ti nestanptz '2013-07-01 12: 00:00') -
EXTRACT(EPOCH FROM ti mestanptz ' 2013-03-01 12: 00: 00');
Resul t: 10537200. 000000
SELECT (EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00") -
EXTRACT(EPOCH FROM ti nestanptz ' 2013-03-01 12: 00: 00'))
/ 60/ 60 / 24;
Resul t: 121.9583333333333333
SELECT tinmestanptz '2013-07-01 12:00: 00" - tinmestanptz '2013-03-01
12: 00: 00" ;
Result: 121 days 23:00: 00
SELECT age(tinmestanptz '2013-07-01 12:00:00', timestanptz
'2013-03-01 12:00:00');
Result: 4 nons

EXTRACT, dat e_part

EXTRACT(fi el d FROM source)

Theext ract function retrieves subfields such as year or hour from date/time values. sour ce must
beavaueexpression of typet i mest anp,dat e, ti me,ori nt er val . (Timestampsand timescan
be with or without time zone.) f i el d isan identifier or string that selects what field to extract from
the source value. Not al fields are valid for every input data type; for example, fields smaller than a
day cannot be extracted from adat e, while fields of aday or more cannot be extracted fromat i ne.
Theext ract function returns values of typenumeri c.

Thefollowing are valid field names:
century

The century; for i nt er val values, the year field divided by 100

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2000-12-16 12:21:13');
Result: 20

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2001-02- 16 20: 38:40');
Result: 21

SELECT EXTRACT(CENTURY FROM DATE ' 0001-01-01 AD);

Result: 1

SELECT EXTRACT(CENTURY FROM DATE ' 0001-12-31 BC);

Result: -1

281

Functions and Operators

SELECT EXTRACT(CENTURY FROM | NTERVAL ' 2001 years');
Result: 20

day

The day of the month (1-31); for i nt er val values, the number of days

SELECT EXTRACT(DAY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 16

SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 minute');
Resul t: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM Tl MESTAMP ' 2001- 02- 16 20: 38:40');
Resul t: 200

dow

The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 5

Notethat ext r act 'sday of theweek numbering differsfromthat of thet o_char (..., 'D)
function.

doy
The day of the year (1-365/366)

SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 47

epoch

Forti mestanmp with tine zone values, the number of secondssince 1970-01-01 00:00:00
UTC (negativefor timestampsbeforethat); for dat e andt i mest anp values, the nomina num-
ber of seconds since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules;
fori nt erval values, thetotal number of secondsin theinterval

SELECT EXTRACT(EPOCH FROM TI MESTAMP W TH TI ME ZONE ' 2001- 02- 16
20: 38: 40. 12-08') ;

Resul t: 982384720. 120000

SELECT EXTRACT(EPOCH FROM TI MESTAMP ' 2001- 02- 16 20: 38: 40. 12') ;
Resul t: 982355920. 120000

SELECT EXTRACT(EPOCH FROM | NTERVAL '5 days 3 hours');

Resul t: 442800. 000000

You can convert an epoch value back toat i mestanp with tinme zonewithto_ti nme-

st anp:

SELECT to_ti nest anp(982384720. 12) ;
Resul t: 2001-02-17 04:38: 40. 12+00

282

Functions and Operators

Bewarethat applyingt o_t i mest anp toanepoch extractedfromadat e ort i mest anp value
could produce a misleading result: the result will effectively assume that the original value had
been given in UTC, which might not be the case.

hour

The hour field (0-23 in timestamps, unrestricted in intervals)

SELECT EXTRACT(HOUR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 20

i sodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(| SODOW FROM Tl MESTAMP ' 2001- 02- 18 20: 38:40');
Result: 7

Thisisidentical to dowexcept for Sunday. Thismatchesthe | SO 8601 day of theweek numbering.
i soyear

The SO 8601 week-numbering year that the date fallsin

SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-01');
Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-02');
Resul t: 2006

Each 1SO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the 1SO year may be different from the Gregorian
year. Seethe week field for more information.

julian

The Julian Date corresponding to the date or timestamp. Timestamps that are not local midnight
result in afractional value. See Section B.7 for more information.

SELECT EXTRACT(JULI AN FROM DATE ' 2006- 01-01');

Resul t: 2453737

SELECT EXTRACT(JULI AN FROM Tl MESTAMP ' 2006- 01-01 12:00');
Resul t: 2453737.50000000000000000000

m cr oseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that thisincludes full
seconds

SELECT EXTRACT(M CROSECONDS FROM TIME ' 17:12:28.5');
Resul t: 28500000

m || enni um

The millennium; for i nt er val values, the year field divided by 1000
SELECT EXTRACT(M LLENNI UM FROM Tl MESTAMP ' 2001- 02- 16 20: 38:40');

Result: 3
SELECT EXTRACT(M LLENNI UM FROM | NTERVAL ' 2001 years');

283

Functions and Operators

Result: 2
Y earsin the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds

The secondsfield, including fractional parts, multiplied by 1000. Note that thisincludes full sec-
onds.

SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5");
Resul t: 28500. 000

m nut e

The minutes field (0-59)

SELECT EXTRACT(M NUTE FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Result: 38

nont h

The number of the month within the year (1-12); for i nt er val values, the number of months
modulo 12 (0-11)

SELECT EXTRACT(MONTH FROM Tl MESTAMP ' 2001- 02-16 20: 38:40');
Result: 2

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 3 nonths');
Result: 3

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 13 nonths');
Result: 1

quarter

The quarter of the year (1-4) that the dateisin

SELECT EXTRACT(QUARTER FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 1

second

The seconds field, including any fractional seconds

SELECT EXTRACT(SECOND FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Resul t: 40. 000000

SELECT EXTRACT(SECOND FROM TI ME '17:12:28.5");

Resul t: 28.500000

ti mezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative valuesto zoneswest of UTC. (Technically, PostgreSQL does not use UTC
because leap seconds are not handled.)

ti mezone_hour
The hour component of the time zone offset
ti mezone_mi nute

The minute component of the time zone offset

284

Functions and Operators

week

The number of the ISO 8601 week-numbering week of the year. By definition, 1SO weeks start
on Mondays and the first week of ayear contains January 4 of that year. In other words, the first
Thursday of ayear isin week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd
or 53rd week of the previous year, and for late-December dates to be part of the first week of the
next year. For example, 2005- 01- 01 ispart of the 53rd week of year 2004, and 2006- 01- 01
is part of the 52nd week of year 2005, while 2012- 12- 31 is part of the first week of 2013. It's
recommended to usethei soyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 7

year

The year field. Keep in mind thereisno 0 AD, so subtracting BC years from AD years should
be done with care.

SELECT EXTRACT(YEAR FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 2001

When processing ani nt er val value, theext ract function produces field values that match the
interpretation used by the interval output function. This can produce surprising results if one starts
with anon-normalized interval representation, for example:

SELECT | NTERVAL ' 80 ninutes';

Result: 01:20:00

SELECT EXTRACT(M NUTES FROM | NTERVAL ' 80 minutes');
Result: 20

Note

When theinput valueis+/-Infinity, ext r act returns+/-Infinity for monotonically-increasing
fields (epoch,j ul i an, year,i soyear, decade, century,and mi | | enni un). For
other fields, NULL isreturned. PostgreSQL versions before 9.6 returned zero for al cases of
infinite input.

Theext ract functionis primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

Thedat e_part functionismodeled on the traditional Ingres equivalent to the SQL -standard func-
tionextract:

date part('field , source)

Note that herethef i el d parameter needsto be astring value, not aname. The valid field names for
dat e_part arethesameasfor ext r act . For historical reasons, thedat e_part function returns
values of type doubl e preci si on. This can result in aloss of precision in certain uses. Using
extract isrecommended instead.

SELECT date_part (' day', TIMESTAWP '2001-02-16 20: 38:40');
Result: 16
SELECT date_part('hour', INTERVAL '4 hours 3 mnutes');

285

Functions and Operators

9.9.2.

9.9.8.

Result: 4

date trunc

Thefunctiondat e_t r unc isconceptually similar to thet r unc function for numbers.

date_trunc(field, source [, tine_zone])

sour ce isavaueexpression of typet i mest anp,ti mestanp with time zone,orinter-
val . (Valuesof typedat e andt i me are cast automatically tot i mest anp ori nt er val , respec-
tively.) f i el d selectsto which precision to truncate the input value. The return value is likewise of
typeti mestanp,timestanp with time zone,orinterval,andithasal fieldsthat are
less significant than the selected one set to zero (or one, for day and month).

Validvauesforfi el d are:

m croseconds
mlliseconds
second

nm nut e

hour

day

week

nont h
guarter

year

decade
century

m |l enni um

When theinput valueisof typet i nestanp with ti ne zone, thetruncation is performed with
respect to a particular time zone; for example, truncation to day produces avalue that is midnight in
that zone. By default, truncation is done with respect to the current TimeZone setting, but the optional
t i me_zone argument can be provided to specify a different time zone. The time zone name can be
specified in any of the ways described in Section 8.5.3.

A time zone cannot be specified when processing t i mestanp wi thout time zone orin-
t er val inputs. These are always taken at face value.

Examples (assuming the local time zoneis Arrer i ca/ New_Yor k):

SELECT date_trunc(' hour', TIMESTAMP '2001-02-16 20:38:40");
Resul t: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40");
Resul t: 2001-01-01 00: 00: 00

SELECT date_trunc(' day', TIMESTAMP WTH TI ME ZONE ' 2001- 02- 16
20: 38: 40+00') ;

Resul t: 2001-02-16 00: 00: 00- 05

SELECT date_trunc(' day', TIMESTAMP WTH TI ME ZONE ' 2001- 02- 16
20: 38: 40+00', 'Australial/Sydney');

Resul t: 2001-02-16 08: 00: 00- 05

SELECT date_trunc(' hour', |INTERVAL '3 days 02:47:33");

Result: 3 days 02: 00: 00

date bin

The function dat e_bi n “bins’ the input timestamp into the specified interval (the stride) aligned
with a specified origin.

286

Functions and Operators

9.9.4.

date_bin(stride, source, origin)

sour ce isavalueexpression of typet i nest anp orti mestanp with ti me zone. (Vauesof
typedat e arecast automatically tot i mest anp.) st ri de isavalueexpressionof typei nt er val .
Thereturnvalueislikewiseof typeti mest anporti nestanp with ti ne zone, andit marks
the beginning of the bin into which thesour ce is placed.

Examples:

SELECT date_bin('15 m nutes', TIMESTAMP '2020-02-11 15:44:17",
TI MESTAMP ' 2001- 01-01');

Resul t: 2020-02-11 15:30:00

SELECT date_bin('15 m nutes', TIMESTAMP '2020-02-11 15:44:17",
TI MESTAMP ' 2001- 01- 01 00: 02: 30');

Resul t: 2020-02-11 15:32:30

Inthe caseof full units (1 minute, 1 hour, etc.), it givesthe sameresult astheanalogousdat e_t r unc
call, but the differenceisthat dat e_bi n can truncate to an arbitrary interval.

Thest ri de interval must be greater than zero and cannot contain units of month or larger.

AT TI ME ZONE

The AT Tl ME ZONE operator converts time stamp without time zone to/from time stamp with time
zone,andtinme with tinme zone vauesto different time zones. Table 9.34 showsiits variants.

Table9.34. AT TI ME ZONE Variants

Operator
Description
Example(s)

timestanp without time zone AT TI ME ZONEzone - tinmestanp with tinme
zone
Converts given time stamp without time zone to time stamp with time zone, assuming the
given value isin the named time zone.
ti mestanp ' 2001-02-16 20:38:40" at tine zone 'Americal/ Den-

ver' - 2001-02-17 03: 38:40+00

tinmestanp with tinme zone AT TI ME ZONEzone - tinestanp without tine
zone
Converts given time stamp with time zone to time stamp without time zone, as the time
would appear in that zone.
timestanmp with tinme zone ' 2001-02-16 20: 38:40-05" at tine

zone ' Anerical/ Denver' - 2001-02-16 18:38: 40

time with tinme zone AT TIME ZONEzone - tine with tine zone
Converts given time with time zone to a new time zone. Since no date is supplied, this
uses the currently active UTC offset for the named destination zone.
time with time zone '05:34:17-05" at time zone 'UIC -
10: 34: 17+00

In these expressions, the desired time zone zone can be specified either asatext value (e.g., ' Arer -
i ca/ Los_Angel es') or as an interval (e.g., | NTERVAL ' -08: 00'). In the text case, atime
zone name can be specified in any of the ways described in Section 8.5.3. The interval case is only
useful for zones that have fixed offsets from UTC, so it is not very common in practice.

Examples (assuming the current TimeZone setting is Arrer i ca/ Los_Angel es):

287

Functions and Operators

9.9.5.

SELECT TI MESTAMP ' 2001-02-16 20:38:40" AT TIME ZONE ' Aneri ca/

Denver';

Resul t: 2001-02-16 19:38:40-08

SELECT TI MESTAMP WTH TI ME ZONE ' 2001- 02- 16 20: 38:40-05" AT TI ME
ZONE ' Arreri cal/ Denver';

Resul t: 2001-02-16 18:38:40

SELECT Tl MESTAMP ' 2001-02-16 20: 38: 40" AT TIME ZONE ' Asi a/ Tokyo' AT
TI ME ZONE ' Anreri ca/ Chi cago’ ;

Resul t: 2001-02-16 05:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current
Ti meZone setting. The second example shifts the time stamp with time zone value to the specified
time zone, and returnsthe valuewithout atime zone. Thisallows storage and display of valuesdifferent
from the current Ti meZone setting. The third example converts Tokyo time to Chicago time.

The function t i nezone(zone, tinestanp) isequivaent to the SQL-conforming construct
ti mestanmp AT TIME ZONE zone.

Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL -standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TI ME

CURRENT_TI MESTAMWP

CURRENT _TI ME(pr eci si on)
CURRENT _TI MESTAMP(pr eci si on)
LOCALTI ME

LOCALTI MESTAMP

LOCALTI ME(pr eci si on)

LOCALTI MESTAMP(pr eci si on)

CURRENT _TI MEand CURRENT _TI MESTAMP deliver valueswithtimezone; LOCALTI MEand LO-
CALTI MESTANP deliver values without time zone.

CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME, and LOCALTI MESTAMP can optionally
take a precision parameter, which causes the result to be rounded to that many fractional digitsin the
seconds field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TI ME;

Result: 14:39:53.662522-05

SELECT CURRENT_DATE;

Result: 2019-12-23

SELECT CURRENT_TI MESTAMP;

Result: 2019-12-23 14:39:53.662522-05
SELECT CURRENT_TI MESTAMP(2) ;

Result: 2019-12-23 14:39:53. 66-05
SELECT LCCALTI MESTANMP;

Result: 2019-12-23 14:39:53. 662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. Thisis considered a feature: the intent is to alow a single transaction to have a con-
sistent notion of the “current” time, so that multiple modifications within the same transaction bear
the same time stamp.

288

Functions and Operators

9.9.6.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functionsis:

transaction_tinestanp()
statement _tinmestanp()
cl ock_tinmestanmp()

ti meof day()

now()

transaction_tinestanp() isequivaent to CURRENT_TI MESTAMP, but is named to clear-
ly reflect what it returns. st at enent _ti nmest anp() returns the start time of the current state-
ment (more specifically, the time of receipt of the latest command message from the client). st at e-
ment _timestanp() andtransacti on_ti nestanp() returnthe same value during the first
command of a transaction, but might differ during subsequent commands. cl ock _t i nest anp()
returns the actual current time, and therefore its value changes even within a single SQL command.
ti meof day() isahistorical PostgreSQL function. Likecl ock_ti mest anp() , it returnsthe ac-
tual current time, but as aformatted t ext string rather thanati nestanp with tine zone
value. now() isatraditional PostgreSQL equivalenttot ransacti on_ti mest anp() .

All the date/time datatypes al so accept the special literal value nowto specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TI MESTAMP;
SELECT now() ;
SELECT TI MESTAMP 'now ; -- but see tip bel ow

Tip

Do not use the third form when specifying a value to be evaluated later, for example in a
DEFAULT clause for atable column. The system will convert nowto at i nest anp as soon
asthe constant is parsed, so that when the default value is needed, the time of the table creation
would be used! Thefirst two formswill not be evaluated until the default valueis used, because
they are function calls. Thus they will give the desired behavior of defaulting to the time of
row insertion. (See also Section 8.5.1.4.)

Delaying Execution

The following functions are available to delay execution of the server process:

pg_sl eep (doubl e precision)
pg_sleep for (interval)
pg_sleep_until (tinmestanp with tinme zone)

pg_sl eep makesthe current session's process sleep until the given number of seconds have el apsed.
Fractional-second delays can be specified. pg_sl eep_f or isaconvenience function to allow the
deeptimeto be specifiedasani nt er val . pg_sl eep_unti | isaconvenience function for when
a specific wake-up time is desired. For example:

289

Functions and Operators

SELECT pg_sl eep(1.5);
SELECT pg_sleep_for('5 mnutes');
SELECT pg_sleep_until ('tonorrow 03:00');

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on
factors such as server load. In particular, pg_sl eep_unti | isnot guaranteed to wake up
exactly at the specified time, but it will not wake up any earlier.

Warning

Make sure that your session does not hold morelocksthan necessary when callingpg_sl eep
or its variants. Otherwise other sessions might have to wait for your sleeping process, slowing
down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functionsthat allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.35. The examples
assume an enum type created as.

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'yellow, 'green',
"blue', '"purple');

Table 9.35. Enum Support Functions

Function
Description
Example(s)

enum first (anyenum) - anyenum
Returns the first value of the input enum type.

enum first(null::rainbow) - red

enum | ast (anyenum) — anyenum
Returns the last value of the input enum type.

enum | ast (null::rai nbow) - purple

enum r ange (anyenum) - anyarray
Returns all values of the input enum type in an ordered array.
enum range(null::rainbow) - {red, orange, yell ow,
green, bl ue, purpl e}

enum r ange (anyenumanyenum) - anyarray
Returns the range between the two given enum values, as an ordered array. The values
must be from the same enum type. If the first parameter is null, the result will start with
the first value of the enum type. If the second parameter is null, the result will end with
the last value of the enum type.
enum range(' orange'::rai nbow, 'green'::rainbow - {or-
ange, yel | ow, gr een}

290

Functions and Operators

Function
Description
Example(s)

enum range(NULL, 'green'::rainbow) - {red, orange, yel -

| ow, gr een}

enum range(' orange'::rai nbow, NULL) - {orange, yel |l ow, green,
bl ue, purpl e}

Noticethat except for the two-argument form of enum _r ange, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of the
type can be passed, with the same result. It is more common to apply these functionsto atable column
or function argument than to a hardwired type name as used in the examples.

9.11. Geometric Functions and Operators

The geometric typespoi nt , box, | seg, | i ne, pat h, pol ygon, andci r cl e have alarge set of
native support functions and operators, shown in Table 9.36, Table 9.37, and Table 9.38.

Table 9.36. Geometric Operators

Operator
Description
Example(s)

geonetric_type+point - geonetric_type
Adds the coordinates of the second poi nt to those of each point of the first argument,
thus performing trandation. Available for poi nt , box, pat h,circl e.

box '(1,1),(0,0)" + point '(2,0) - (3,1), (2 0)

path+path - path
Concatenates two open paths (returns NULL if either path is closed).
path "[(0,0),(1,1)]" + path "[(2,2),(3,3),(4,4]" -[(0,0),
(1,1),(2,2),(3,3), (4, 4)]

geonetric_type- point - geonetric_type
Subtracts the coordinates of the second poi nt from those of each point of the first argu-
ment, thus performing translation. Available for poi nt , box, pat h, ci rcl e.

box '(1,1),(0,0)" - point '(2,0)" - (-1,1),(-2,0)

geonetric_type* point - geonetric_type
Multiplies each point of the first argument by the second poi nt (treating a point as be-
ing a complex number represented by real and imaginary parts, and performing standard
complex multiplication). If one interprets the second poi nt asavector, thisis equiva
lent to scaling the object's size and distance from the origin by the length of the vector,
and rotating it counterclockwise around the origin by the vector's angle from the x axis.
Availablefor poi nt , box,2pat h,ci rcl e.

path ' ((0,0),(1,0),(1,1))" * point '(3.0,0)" - ((0,0),(3,0),

(3,3))
path ' ((0,0),(1,0),(21,1))" * point(cosd(45), sind(45))

~ ((0,0), (0.7071067811865475, 0. 7071067811865475) ,
(0, 1. 414213562373095))

geonetric_type/ point - geonetric_type
Divides each point of the first argument by the second poi nt (treating apoint asbeing a
complex number represented by real and imaginary parts, and performing standard com-
plex division). If one interprets the second poi nt asavector, thisis equivalent to scal-
ing the object's size and distance from the origin down by the length of the vector, and

291

Functions and Operators

Operator
Description
Example(s)

rotating it clockwise around the origin by the vector's angle from the x axis. Available
for poi nt , box,2pat h,circl e.

path '((0,0),(1,0),(1,1))" / point '(2.0,0)' - ((0,0),
(0.5,0),(0.5,0.5))

path ' ((0,0),(1,0),(1,1))" / point(cosd(45), sind(45))

- ((0,0),(0.7071067811865476, - 0. 7071067811865476) ,
(1.4142135623730951, 0))

@ @geonetric_type - doubl e precision
Computesthe total length. Availablefor | seg, pat h.

@@path I[(O!O)!(lio)!(lil)]l -2

@ageonetric_type - point
Computes the center point. Available for box, | seg, pol ygon,circl e.

@ box '(2,2),(0,0)" -(1,1)

#geonetric_type - integer
Returns the number of points. Available for pat h, pol ygon.
path '((1,0),(0,1),(-2,0))" -3

geonetric_type#geonetric_type - point
Computes the point of intersection, or NULL if thereisnone. Availablefor | seg,
line.

Iseg '[(0,0),(1,1)]" # Iseg '[(1,0),(0,1)]" - (0.5,0.5)

box # box - box
Computes the intersection of two boxes, or NULL if thereis none.

box '(2,2),(-1,-1)" # box '(1,1),(-2,-2)" - (1,1),(-1,-1)

geonetric_type ## geonetric_type - poi nt
Computes the closest point to the first object on the second object. Available for these
pairs of types: (poi nt , box), (poi nt, | seg), (poi nt, i ne), (I seg, box), (I seq,
I seg), (i ne, | seq).

point '(0,0)" ## lseg '[(2,0),(0,2)]" - (1,1)

geonetric_type<->geonetric_type - doubl e precision
Computes the distance between the objects. Available for all seven geometric types, for
all combinations of poi nt with another geometric type, and for these additional pairs of
types: (box, | seq), (I seg, i ne), (pol ygon, ci r cl e) (and the commutator cases).

circle '<(0,0),1> <->circle '<(5,0),1> -3

geonetric_type @ geonetric_type - bool ean
Doesfirst object contain second? Available for these pairs of types: (box, poi nt),
(box, box), (pat h, poi nt), (pol ygon, poi nt), (pol ygon, pol ygon), (ci rcl e,
point),(circle,circle).

circle '<(0,0),2> @ point '(1,1)" >t

geonetric_type <@geonetric_type - bool ean
Isfirst object contained in or on second? Available for these pairs of types: (poi nt ,
box), (poi nt, | seq), (poi nt, | i ne), (poi nt, pat h), (poi nt, pol ygon),
(poi nt, ci rcl e), (box, box), (I seg, box), (I seg, | i ne), (pol ygon, pol ygon),
(circle,circle).

point '(1,1)' <@circle '<(0,0),2> -t

292

Functions and Operators

Operator
Description
Example(s)

geonetric_type & geonetric_type - bool ean
Do these objects overlap? (One point in common makes this true.) Available for box,
pol ygon,circle.

box '(1,1),(0,0)" && box '(2,2),(0,0)" -t

geonetric_type <<geonetric_type - bool ean
Isfirst object strictly left of second? Available for poi nt , box, pol ygon, circl e.

circle '<(0,0),1> << circle '"<(5,0),1> -t

geonetric_type >>geonetric_type - bool ean
Isfirst object strictly right of second? Available for poi nt , box, pol ygon, ci rcl e.

circle '<(5,0),1>" >>circle '<(0,0),1> -t

geonetric_type & geonetric_type - bool ean
Doesfirst object not extend to the right of second? Available for box, pol ygon, ci r -
cle.

box ' (1,1),(0,0)" &< box '(2,2),(0,0)" -t

geonetric_type & geonetric_type - bool ean
Doesfirst object not extend to the left of second? Available for box, pol ygon, ci r -
cle.

box ' (3,3),(0,0)" & box '(2,2),(0,0)" -t

geonetric_type <<| geonetric_type - bool ean
Isfirst object strictly below second? Available for poi nt , box, pol ygon, circl e.

box ' (3,3),(0,0)" <<| box '(5,5),(3,4)" -t

geonetric_type|>>geonetric_type - bool ean
Isfirst object strictly above second? Available for poi nt , box, pol ygon, ci rcl e.

box '(5,5),(3,4)"' |>> box '(3,3),(0,0)' -t

geonetric_type &| geonetric_type - bool ean
Doesfirst object not extend above second? Available for box, pol ygon, ci rcl e.

box '(1,1),(0,0)" &| box '(2,2),(0,0)" -t

geonetric_type| & geonetric_type - bool ean
Does first object not extend below second? Available for box, pol ygon, ci rcl e.

box ' (3,3),(0,0)" |& box '(2,2),(0,0)" -t

box <" box - bool ean
Isfirst object below second (allows edges to touch)?

box '((1,1),(0,0))" <A box '((2,2),(1,1))" -t

box >" box - bool ean
Isfirst object above second (allows edges to touch)?

box ' ((2,2),(1,1))" > box '((1,1),(0,0))" -t

geonetric_type ?#geonetric_type - bool ean
Do these objects intersect? Available for these pairs of types: (box, box), (I seg, box),
(I seqg, | seq), (I seg,line),(Iine, box),(ine,line), (path,path).

Iseg "[(-1,0),(1,0)]" ?# box '(2,2),(-2,-2)" -t

?- 1i ne = bool ean

293

Functions and Operators

Operator
Description
Example(s)

?- I seg - bool ean
Isline horizontal ?

2- Iseg '[(-1,0),(1,0)]" =t

poi nt ?- poi nt - bool ean
Are points horizontally aligned (that is, have samey coordinate)?

point '(1,0)" ?- point '(0,0)" -t

?| i ne - bool ean

?| 1 seg - bool ean
Islinevertical?

2] Iseg '[(-1,0),(1,0)]" - f

poi nt ?| point - bool ean
Are points vertically aligned (that is, have same x coordinate)?

point '(0,1)" ?| point '(0,0)" -t

line?-] line - bool ean

| seg ?-| | seg - bool ean
Arelines perpendicular?

Iseg '[(0,0),(0,1)]" ?-| Iseg '[(0,0),(1,0)]" -t

line?|| Iine - bool ean

I seg?|| | seg - bool ean
Arelines parallel?

Iseg "[(-1,0),(1,0]" ?|| Iseg "[(-1,2),(1,2)]" -t

geonetric_type ~=geonetric_type - bool ean
Are these objects the same? Available for poi nt , box, pol ygon, circl e.
polygon ' ((0,0),(1,1))" ~= polygon " ((1,1),(0,0))" -t

& Rotating” abox with these operators only movesits corner points: the box is still considered to have sides parallel to the axes.
Hence the box's size is not preserved, as a true rotation would do.

Caution

Note that the “same as’ operator, ~=, represents the usual notion of equality for the poi nt ,
box, pol ygon, and ci r cl e types. Some of the geometric types also have an = operator,
but = compares for equal areas only. The other scalar comparison operators (<= and so on),
where available for these types, likewise compare areas.

Note

Before PostgreSQL 14, the point is strictly below/above comparison operators poi nt <<|
poi nt and poi nt | >> poi nt were respectively called <* and >". These names are still
available, but are deprecated and will eventually be removed.

294

Functions and Operators

Table 9.37. Geometric Functions

Function
Description
Example(s)

area (geonetric_type) - doubl e precision
Computes area. Available for box, pat h, ci r cl e. A pat h input must be closed, else
NULL isreturned. Also, if the pat h is self-intersecting, the result may be meaningless.

area(box '(2,2),(0,0)') -4

center (geonetric_type) - point
Computes center point. Available for box, ci rcl e.

center(box '(1,2),(0,0)") - (0.5,1)

di agonal (box) - | seg
Extracts box's diagonal as aline segment (same as| seg(box)).
di agonal (box '(1,2),(0,0)") -[(1,2),(0,0)]

di ameter (circle) - doubl e precision
Computes diameter of circle.

di aneter(circle '<(0,0),2>) - 4

hei ght (box) - doubl e precision
Computes vertical size of box.

hei ght (box ' (1,2),(0,0)') - 2

i scl osed (path) - bool ean
Is path closed?

i scl osed(path ' ((0,0),(1,1),(2,0))") =t

i sopen (path) - bool ean
I's path open?
i sopen(path '[(0,0),(1,1),(2,0)]") ~t

| ength (geonetric_type) - doubl e precision
Computesthe total length. Availablefor | seg, pat h.

I ength(path '((-1,0),(1,0))"') - 4

npoi nts (geonetric_type) - i nteger
Returns the number of points. Available for pat h, pol ygon.
npoi nts(path '[(0,0),(1,1),(2,0)]') -3

pcl ose (path) - path
Converts path to closed form.

pclose(path '[(0,0),(1,1),(2,0)]") -((0,0),(1,1),(2,0))

popen (path) - path
Converts path to open form.
popen(path ' ((0,0),(1,1),(2,0))") -[(0,0),(1,1),(2,0)]

radi us (circle) - doubl e precision
Computes radius of circle.

radius(circle '<(0,0),2>) -2

sl ope (poi nt, poi nt) - doubl e precision
Computes slope of aline drawn through the two points.

295

Functions and Operators

Function
Description
Example(s)

sl ope(point '(0,0)', point '(2,1)') - 0.5

wi dt h (box) - doubl e preci sion
Computes horizontal size of box.

wi dth(box ' (1,2),(0,0)') -1

Table 9.38. Geometric Type Conversion Functions

Function
Description
Example(s)

box (circle) - box
Computes box inscribed within the circle.
box(circle '<(0,0),2>) >
(1.414213562373095, 1. 414213562373095),
(-1.414213562373095, - 1. 414213562373095)

box (poi nt) - box
Converts point to empty box.

box(point '(1,0)") - (1,0),(1,0)

box (poi nt, poi nt) - box
Converts any two corner points to box.

box(point '(0,1)', point '(1,0)') -(1,1),(0,0)

box (pol ygon) - box
Computes bounding box of polygon.

box(pol ygon * ((0,0),(1,1),(2,0))") - (2,1),(0,0)

bound_box (box, box) - box
Computes bounding box of two boxes.
bound_box(box '(1,1),(0,0)", box '(4,4),(3,3)') - (4,4),
(0,0)

circle(box) »circle
Computes smallest circle enclosing box.

circle(box '(1,1),(0,0)') - <(0.5,0.5),0.7071067811865476>

circle(point,double precision) »circle
Constructs circle from center and radius.

circle(point '(0,0)', 2.0) - <(0,0), 2>

circle(polygon) - circle
Converts polygon to circle. The circle's center is the mean of the positions of the poly-
gon's points, and the radius is the average distance of the polygon's points from that cen-
ter.

circle(polygon '((0,0),(1,3),(2,0))') -
<(1,1),1.6094757082487299>

l'ine(point,point)-1line
Converts two points to the line through them.
line(point '(-1,0)', point '(1,0)') -{0,-1,0}

296

Functions and Operators

Function
Description
Example(s)

| seg (box) - | seg
Extracts box's diagonal as a line segment.

I seg(box ' (1,0),(-1,0)') = [(1,0),(-1,0)]

| seg (poi nt,point) - |seg
Constructs line segment from two endpoints.

I seg(point '(-1,0)', point '(1,0)') -[(-1,0),(1,0)]

pat h (pol ygon) — path
Converts polygon to a closed path with the same list of points.

pat h(pol ygon * ((0,0),(1,1),(2,0))") - ((0,0),(1,1),(2,0))

poi nt (doubl e preci sion,doubl e precision) - point
Constructs point from its coordinates.

poi Nt (23. 4, -44.5) - (23.4,-44.5)

poi nt (box) - poi nt
Computes center of box.
poi nt (box ' (1,0),(-1,0)") - (0,0)

poi nt (circle) - point
Computes center of circle.
point(circle '<(0,0),2>) - (0,0)

poi nt (I seg) - poi nt
Computes center of line segment.
point(lseg '[(-1,0),(1,0)]") - (0,0)

poi nt (pol ygon) - poi nt
Computes center of polygon (the mean of the positions of the polygon's points).

poi nt (polygon '((0,0),(1,1),(2,0))") -
(1, 0.3333333333333333)

pol ygon (box) - pol ygon
Converts box to a4-point polygon.
pol ygon(box '(1,1),(0,0)') - ((0,0),(0,1),(1,1),(1,0))

pol ygon (circle) - pol ygon
Converts circle to a 12-point polygon.
pol ygon(circle '<(0,0),2>) - ((-2,0),
(-1.7320508075688774, 0. 9999999999999999) ,
(-1.0000000000000002, 1. 7320508075688772),
(-1.2246063538223773e- 16, 2),
(0.9999999999999996, 1. 7320508075688774) ,
(1. 732050807568877, 1. 0000000000000007) ,
(2,2.4492127076447545e- 16) ,
(1. 7320508075688776, - 0. 9999999999999994) ,
(1. 0000000000000009, - 1. 7320508075688767) ,
(3.673819061467132e- 16, - 2),
(-0.9999999999999987, - 1. 732050807568878) ,
(-1.7320508075688767, - 1. 0000000000000009))

pol ygon (i nteger,circle) - pol ygon

297

Functions and Operators

9.12.
tors

Function
Description
Example(s)

Converts circle to an n-point polygon.

pol ygon(4, circle '<(3,0),1>") - ((2,0),(3,1),
(4, 1.2246063538223773e-16), (3, -1))

pol ygon (path) - pol ygon
Converts closed path to a polygon with the same list of points.

pol ygon(path * ((0,0),(1,1),(2,0))") - ((0,0),(1,1),(2,0))

It is possible to access the two component numbers of apoi nt asthough the point were an array with
indexes 0 and 1. For example, if t . p isapoi nt columnthen SELECT p[0] FROM t retrieves
the X coordinate and UPDATE t SET p[1l] = ... changestheY coordinate. In the same way,
avalue of typebox or | seg can betreated as an array of two poi nt values.

Network Address Functions and Opera-

The IP network address types, ci dr and i net, support the usual comparison operators shown in
Table 9.1 aswell as the specialized operators and functions shown in Table 9.39 and Table 9.40.

Any ci dr valuecanbecasttoi net implicitly; therefore, the operators and functions shown below
asoperatingoni net alsowork on ci dr values. (Where there are separate functions for i net and
ci dr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast
ani net vauetoci dr. When thisis done, any bits to the right of the netmask are silently zeroed
to createavalidci dr vaue.

Table 9.39. |P Address Operators

Operator
Description
Example(s)

i net <<inet - bool ean
I's subnet strictly contained by subnet? This operator, and the next four, test for subnet in-
clusion. They consider only the network parts of the two addresses (ignoring any bitsto
the right of the netmasks) and determine whether one network is identical to or a subnet
of the other.

inet '192.168.1.5 << inet '192.168.1/24" -t
inet '192.168.0.5 << inet '192.168.1/24" - f
inet '192.168.1/24" << inet '192.168.1/24' - f

i net <<=inet - bool ean
I's subnet contained by or equal to subnet?

inet '192.168.1/24" <<= inet '192.168.1/24" -t

i net >>inet - bool ean
Does subnet strictly contain subnet?

inet '192.168.1/24' >> inet '192.168.1.5 St

i net >>=inet - bool ean
Does subnet contain or equal subnet?

inet '192.168.1/24' >>= inet '192.168.1/24" -t

i net & i net - bool ean

298

Functions and Operators

Operator
Description
Example(s)

Does either subnet contain or equal the other?
inet '192.168.1/24' && inet '192.168.1.80/28 -t
inet '192.168.1/24" && inet '192.168.2.0/28" - f

~inet - inet
Computes bitwise NOT.

~ inet '192.168.1.6" - 63.87.254. 249

i net &i net - inet
Computes bitwise AND.

inet '192.168.1.6' & inet '0.0.0.255" - 0.0.0.6

inet | inet - inet
Computes bitwise OR.
inet '192.168.1.6"' | inet '0.0.0.255 - 192.168.1.255

i net +bigint - inet
Adds an offset to an address.

inet '192.168.1.6" + 25 - 192.168.1.31

bi gi nt +inet - inet
Adds an offset to an address.

200 + inet ":: ffff:fff0O:1" - ::ffff:255.240.0.201

i net - bigint - inet
Subtracts an offset from an address.
inet '192.168.1.43" - 36 - 192.168.1.7

i net - i net - bi gint
Computes the difference of two addresses.
inet '192.168.1.43" - inet '192.168.1.19" - 24

inet '::1'" - inet '::ffff:1'" - -4294901760

Table 9.40. | P Address Functions

Function
Description
Example(s)

abbrev (i net) - text
Creates an abbreviated display format as text. (Theresult isthe same asthei net output
function produces; it is “abbreviated” only in comparison to the result of an explicit cast
tot ext , which for historical reasons will never suppress the netmask part.)

abbrev(inet '10.1.0.0/32") - 10.1.0.0

abbrev (cidr) - text
Creates an abbreviated display format as text. (The abbreviation consists of dropping all-
zero octets to the right of the netmask; more examples arein Table 8.22.)

abbrev(cidr '10.1.0.0/16") - 10.1/16

broadcast (i net) - inet
Computes the broadcast address for the address's network.

broadcast (i net '192.168.1.5/24") - 192.168. 1. 255/ 24

299

Functions and Operators

Function
Description
Example(s)

famly (inet) - integer
Returns the address's family: 4 for |Pv4, 6 for IPv6.
famly(inet '::1') -6

host (i net) - text
Returns the | P address as text, ignoring the netmask.

host (i net '192.168.1.0/24') - 192.168.1.0

host mask (i net) - i net
Computes the host mask for the address's network.

host mask(i net '192.168.23.20/30") - 0.0.0.3

inet_merge(inet,inet) - cidr
Computes the smallest network that includes both of the given networks.

i net_merge(inet '192.168.1.5/24', inet '192.168.2.5/24") -
192.168. 0. 0/ 22

inet_sane _famly (inet,inet) - bool ean
Tests whether the addresses belong to the same P family.

inet_sane_famly(inet '192.168.1.5/24", inet '::1') - f

maskl en (i net) — i nteger
Returns the netmask length in bits.

maskl en(inet '192.168.1.5/24") - 24

net mask (i net) - i net
Computes the network mask for the address's network.

net mask(inet '192.168.1.5/24"') - 255.255.255.0

networ k (i net) » cidr
Returns the network part of the address, zeroing out whatever is to the right of the net-
mask. (Thisis eguivalent to casting the valueto ci dr .)

networ k(inet '192.168.1.5/24") - 192.168.1.0/24

set _maskl en (inet,integer) - inet
Setsthe netmask length for ani net value. The address part does not change.
set _maskl en(inet '192.168.1.5/24', 16) - 192.168.1.5/16

set _naskl en (cidr,integer) - cidr
Setsthe netmask length for aci dr value. Address bits to the right of the new netmask
are set to zero.

set _masklen(cidr '192.168.1.0/24', 16) - 192.168.0.0/16

text (inet) - text
Returns the unabbreviated | P address and netmask length astext. (This has the same re-
sult asan explicit cast tot ext .)

text(inet '192.168.1.5) - 192.168. 1.5/ 32

300

Functions and Operators

Tip

The abbr ev, host , and t ext functions are primarily intended to offer alternative display
formats for | P addresses.

The MAC address types, mracaddr and nacaddr 8, support the usual comparison operators shown
in Table 9.1 as well as the specialized functions shown in Table 9.41. In addition, they support the
bitwise logical operators~, &and | (NOT, AND and OR), just as shown above for | P addresses.

Table9.41. MAC Address Functions

Function
Description
Example(s)

trunc (rmacaddr) » macaddr
Setsthe last 3 bytes of the address to zero. The remaining prefix can be associated with a
particular manufacturer (using data not included in PostgreSQL).

trunc(macaddr ' 12:34:56:78:90:ab') - 12:34:56: 00: 00: 00

trunc (rmacaddr8) - macaddr 8
Setsthe last 5 bytes of the address to zero. The remaining prefix can be associated with a
particular manufacturer (using data not included in PostgreSQL).
trunc(nacaddr8 ' 12:34:56:78:90: ab: cd: ef') -
12: 34: 56: 00: 00: 00: 00: 00

macaddr 8 set 7bit (nmacaddr8) — nacaddr 8
Sets the 7th bit of the address to one, creating what is known as modified EUI-64, for in-
clusion in an I1Pv6 address.
nmacaddr 8_set 7bi t (macaddr8 ' 00: 34: 56: ab: cd: ef') -
02: 34:56: ff:fe:ab: cd: ef

9.13. Text Search Functions and Operators

Table 9.42, Table 9.43 and Table 9.44 summarize the functions and operators that are provided for
full text searching. See Chapter 12 for a detailed explanation of PostgreSQL 's text search facility.

Table 9.42. Text Search Operators

Operator
Description
Example(s)

t svect or @@ squery - bool ean

t squery @@t svect or - bool ean
Doest svect or matcht squer y? (The arguments can be given in either order.)
to_tsvector('fat cats ate rats') @to_tsquery('cat & rat')

>t

text @@ squery - bool ean
Doestext string, after implicit invocation of t o_t svect or (), matcht squery?

"fat cats ate rats' @@to_tsquery('cat &rat') >t

t svect or @@t squery - bool ean
t squery @@ox svect or - bool ean

301

Functions and Operators

Operator
Description
Example(s)

Thisis adeprecated synonym for @@
to tsvector('fat cats ate rats') @@to_tsquery('cat &

rat') -t

tsvector || tsvector - tsvector
Concatenatestwo t svect or s. If both inputs contain lexeme positions, the second in-
put's positions are adjusted accordingly.
"a:l b:2'::tsvector || 'c:1 d:2 b:3" ::tsvector - 'a':1
"b':2,5"'c':3'd:4

tsquery &&tsquery — tsquery
ANDstwot squer ystogether, producing a query that matches documents that match
both input queries.
"fat | rat'::tsquery && 'cat'::tsquery - ('fat' |
'cat'’

rat’) &

tsquery || tsquery - tsquery
ORstwot squer ystogether, producing a query that matches documents that match ei-
ther input query.
"fat | rat'::tsquery || 'cat'::tsquery - 'fat' | 'rat' |
'cat'’

I'l tsquery - tsquery
Negatesat squer y, producing a query that matches documents that do not match the
input query.
Il 'cat'::tsquery - !'cat'

tsquery <->tsquery - tsquery
Constructs a phrase query, which matchesif the two input queries match at successive
lexemes.

to_tsquery('fat') <->to_tsquery('rat') - "'fat' <->

r at

tsquery @ tsquery - bool ean
Doesfirstt squer y contain the second? (This considers only whether al the lexemes
appearing in one query appear in the other, ignoring the combining operators.)

‘cat'::tsquery @ 'cat & rat'::tsquery - f

t squery <@t squery — bool ean
Isfirstt squery contained in the second? (This considers only whether all the lexemes
appearing in one query appear in the other, ignoring the combining operators.)

"cat'::tsquery <@'cat & rat'::tsquery -t
"cat'::tsquery <@'!cat & rat'::tsquery -t

In addition to these specialized operators, the usual comparison operators shown in Table 9.1 are
availablefor typest svect or andt squer y. These are not very useful for text searching but allow,
for example, unique indexes to be built on columns of these types.

Table 9.43. Text Search Functions

Function
Description
Example(s)

array _to tsvector (text[]) - tsvector

302

Functions and Operators

Function
Description
Example(s)

Converts an array of text stringsto at svect or . The given strings are used as |lexemes
as-is, without further processing. Array elements must not be empty strings or NULL.
array_to_tsvector('{fat,cat,rat}'::text[]) - "'cat' 'fat’
‘rat'’

get _current _ts_config() - regconfig
Returns the OID of the current default text search configuration (as set by default_tex-
t_search_config).

get _current_ts config() - english

I ength (tsvector) - i nteger
Returns the number of lexemesinthet svect or.

length('fat:2,4 cat:3 rat:5A ::tsvector) - 3

nunmode (t squery) — i nt eger
Returns the number of lexemes plus operatorsinthet squery.

numode(' (fat & rat) | cat'::tsquery) -5

pl ainto_tsquery ([configregconfig,]querytext) - tsquery
Convertstextto at squer y, normalizing words according to the specified or default
configuration. Any punctuation in the string isignored (it does not determine query oper-
ators). The resulting query matches documents containing all non-stopwords in the text.

plainto_tsquery('english', 'The Fat Rats') - 'fat' & 'rat’

phraseto_tsquery ([configregconfig,]querytext) - tsquery
Convertstext to at squer y, normalizing words according to the specified or default
configuration. Any punctuation in the string isignored (it does not determine query oper-
ators). The resulting query matches phrases containing all non-stopwords in the text.
phraseto_tsquery('english', 'The Fat Rats') - 'fat' <->
‘rat’
phraseto_tsquery('english', 'The Cat and Rats') - 'cat' <2>
‘rat’

websearch_to_tsquery ([configregconfig,]querytext) - tsquery
Convertstextto at squer y, normalizing words according to the specified or default
configuration. Quoted word sequences are converted to phrase tests. The word “or” is un-
derstood as producing an OR operator, and a dash produces a NOT operator; other punc-
tuation isignored. This approximates the behavior of some common web search tools.

websearch_to_tsquery('english', ""fat rat" or cat dog') -
"fat' <-> 'rat' | 'cat' & 'dog

querytree (tsquery) — text
Produces a representation of the indexable portion of at squer y. A result that is empty
or just T indicates a non-indexable query.

gquerytree('foo & ! bar'::tsquery) - 'foo'

set wei ght (vector tsvector,weight "char") - tsvector
Assigns the specified wei ght to each element of thevect or .
setweight('fat:2,4 cat:3 rat:5B ::tsvector, "A') - 'cat':3A
"fat':2A 4A 'rat':5A

set wei ght (vector tsvector,wei ght "char",|l exenmestext[]) - tsvector

303

Functions and Operators

Function
Description
Example(s)

Assigns the specified wei ght to elements of thevect or that arelistedin| exenes.
Thestringsin| exenes are taken as lexemes as-is, without further processing. Strings
that do not match any lexemeinvect or areignored.

setweight('fat:2,4 cat:3 rat:5,6B" ::tsvector, 'A,

"{cat,rat}') -'cat':3A '"fat':2,4 "rat':5A 6A

strip(tsvector) - tsvector
Removes positions and weights from thet svect or .

strip('fat:2,4 cat:3 rat:5A ::tsvector) - "'cat' 'fat’

rat

to_tsquery ([configregconfig,]querytext) - tsquery
Convertstext to at squer y, normalizing words according to the specified or default
configuration. The words must be combined by valid t squer y operators.

to_tsquery('english', 'The & Fat & Rats') - 'fat' & "rat’

to_tsvector ([configregconfig,]docunent text) - tsvector
Convertstextto at svect or , normalizing words according to the specified or default
configuration. Position information is included in the result.

to_tsvector('english', 'The Fat Rats') - 'fat':2 'rat':3

to_tsvector ([configregconfig,]docunent json) - tsvector

to_tsvector ([configregconfig,]docunent jsonb) - tsvector
Converts each string value in the JSON document to at svect or, normalizing words
according to the specified or default configuration. The results are then concatenated in
document order to produce the output. Position information is generated as though one
stopword exists between each pair of string values. (Beware that “document order” of the
fields of a JSON object isimplementation-dependent when theinput isj sonb; observe
the difference in the examples.)
to_tsvector('english', '{"aa": "The Fat Rats", "b":
"dog"}'::json) - 'dog':5 'fat':2 'rat':3
to_tsvector('english', '{"aa": "The Fat Rats", "b":
"dog"}'::jsonb) - 'dog':1 'fat':4 'rat':5

json_to tsvector ([configregconfig,]docunent json,filter jsonb) -
t svect or
jsonb _to tsvector ([configregconfig,]docunent jsonb,filter jsonb)

- tsvector

Selects each item in the JSON document that is requested by thef i | t er and converts
each oneto at svect or, normalizing words according to the specified or default con-
figuration. The results are then concatenated in document order to produce the output.
Position information is generated as though one stopword exists between each pair of se-
lected items. (Beware that “ document order” of the fields of a JSON object isimplemen-
tation-dependent when theinput isj sonb.) Thefi | t er must beaj sonb array con-
taining zero or more of these keywords: " st ri ng" (to include al string values), " nu-
nmeri c" (toinclude al numeric values), " bool ean" (toinclude all boolean values),
"key" (toincludeall keys), or"al | " (toinclude al the above). As a specia case, the
filter canasobeasimpleJSON valuethat isone of these keywords.

json_to tsvector('english', '{"a": "The Fat Rats", "b":
123}'::json, '["string", "nuneric"]') - '123':5 'fat':2
"rat':3

304

Functions and Operators

Function
Description
Example(s)
json_to tsvector('english', '{"cat": "The Fat Rats", "dog":
123}'::json, ""all"') - "'123':9 'cat':1 'dog':7 'fat':4
'rat':5

ts_del ete(vector tsvector,|l exenetext) » tsvector
Removes any occurrence of the given | exene fromthevect or . Thel exemne stringis
treated as alexeme as-is, without further processing.
ts delete('fat:2,4 cat:3 rat:5A ::tsvector, 'fat') - "'cat':3
"rat':5A

ts_delete(vector tsvector,l exenestext[]) - tsvector
Removes any occurrences of the lexemesin | exenes fromthevect or . The strings
inl exemes aretaken aslexemes as-is, without further processing. Strings that do not
match any lexemeinvect or areignored.
ts _delete('fat:2,4 cat:3 rat:5A" ::tsvector, AR

RAY['fat','rat']) - 'cat':3

ts filter (vector tsvector,weights"char"[]) - tsvector
Selects only elements with the given wei ght s from thevect or .
ts filter('fat:2,4 cat:3b,7c rat:5A ::tsvector, '{a,b}') -
‘cat':3B 'rat':5A

ts_headline ([configregconfig,]docunent text,querytsquery[,options

text]) - text

Displays, in an abbreviated form, the match(es) for the quer y inthedocumnent , which
must be raw text not at svect or . Words in the document are normalized according to
the specified or default configuration before matching to the query. Use of this function
isdiscussed in Section 12.3.4, which also describes the available opt i ons.

ts _headline(' The fat cat ate the rat.', 'cat') - The fat
cat ate the rat.

ts_headline([configregconfig,]docunent json,querytsquery[,options
text]) - text

ts_headline ([configregconfig,]docunment jsonb,querytsquery [, op-
tionstext]) - text
Displays, in an abbreviated form, match(es) for the quer y that occur in string values
within the JSON docunent . See Section 12.3.4 for more detalls.
ts_headline('{"cat":"raining cats and dogs"}'::jsonb,
"cat') - {"cat": "raining cats and dogs"}

ts rank ([weightsreal [],]vector tsvector,querytsquery|[,nornaliza-

tioninteger]) - real
Computes a score showing how well thevect or matchesthe query. See Sec-
tion 12.3.3 for details.

ts_rank(to_tsvector('raining cats and dogs'), 'cat') -
0. 06079271

ts_rank_cd ([weightsreal[],]vector tsvector,querytsquery [,nornal -

i zationinteger]) - real
Computes a score showing how well thevect or matchesthe quer y, using acover
density algorithm. See Section 12.3.3 for details.

ts rank _cd(to_tsvector('raining cats and dogs'), 'cat') -
0.1

305

Functions and Operators

Function
Description
Example(s)

ts_ rewite(querytsquery,target tsquery,substitutetsquery) - ts-

query
Replaces occurrences of t ar get with subst i t ut e withinthe quer y. See Sec-
tion 12.4.2.1 for details.

ts_ rewite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::ts-

query) - 'b" & ('foo" | 'bar')

ts_rewite(querytsquery,select text) - tsquery
Replaces portions of the quer y according to target(s) and substitute(s) obtained by exe-
cuting a SELECT command. See Section 12.4.2.1 for details.
SELECT ts_rewite('a & b'::tsquery, 'SELECT t,s FROM al i as-

es') -'b" & ('foo' | 'bar')

t squery_phrase (queryltsquery,query2tsquery) - tsquery
Constructs a phrase query that searches for matches of quer y1 and quer y2 at succes-
sive lexemes (same as <- > operator).
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat')) - 'fat’
<-> 'cat'

tsquery_phrase (queryltsquery,query2tsquery,distanceinteger) -
tsquery
Constructs a phrase query that searches for matches of quer y1 and quer y 2 that occur
exactly di st ance lexemes apart.
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10) -
'fat' <10> 'cat'

tsvector_to_array (tsvector) - text[]
Convertsat svect or to an array of lexemes.
tsvector to array('fat:2,4 cat:3 rat:5A ::tsvector) -
{cat,fat,rat}

unnest (tsvector) —» setof record(lexenetext,positionssmallint[],

wei ght stext)
Expandsat svect or into aset of rows, one per lexeme.

select * fromunnest('cat:3 fat:2,4 rat:5A ::tsvector) -

________ o
cat | {3} | {D}

fat | {2, 4} | {D D}
rat | {5} | {A

Note

All the text search functions that accept an optional r egconf i g argument will use the con-
figuration specified by default_text search_config when that argument is omitted.

The functions in Table 9.44 are listed separately because they are not usually used in everyday text
searching operations. They are primarily helpful for development and debugging of new text search
configurations.

306

Functions and Operators

Table 9.44. Text Search Debugging Functions

Function
Description
Example(s)

ts_debug ([configregconfig,]docunent text) » setof record(alias
text,descriptiontext,tokentext,dictionariesregdictionary[],
dictionaryregdictionary,l exemestext[])
Extracts and normalizes tokens from the docunent according to the specified or default
text search configuration, and returns information about how each token was processed.
See Section 12.8.1 for details.

ts_debug('english', 'The Brightest supernovaes') -
(asciiword,"Word, all ASCI1", The, {english_sten}, eng-
lish_stem{})

ts_lexize(dict regdictionary,tokentext) - text[]
Returns an array of replacement lexemesiif the input token is known to the dictionary, or
an empty array if the token is known to the dictionary but it is a stop word, or NULL if it
isnot a known word. See Section 12.8.3 for detalls.

ts lexize('english stem, 'stars') - {star}

ts_parse (parser_nanetext,docunent text) - setof record(tokidin-
t eger,tokentext)
Extracts tokens from the documnent using the named parser. See Section 12.8.2 for de-
tails.
ts_parse('default', 'foo - bar') - (1,foo0)

ts_parse (parser_oidoid,docunent text) - setof record(tokidinte-
ger,tokentext)
Extracts tokens from the documnrent using a parser specified by OID. See Section 12.8.2
for details.

ts_parse(3722, 'foo - bar') - (1,foo0)

ts_token_type (parser_nanetext) - setof record(tokidinteger,alias
text,descriptiontext)
Returns atable that describes each type of token the named parser can recognize. See
Section 12.8.2 for details.

ts_token type('default’') - (1,asciiword,"Wrd, all
ASCI 1 ")

ts_token_type(parser_oidoid) — setof record(tokidinteger,alias
text,descriptiontext)
Returns atable that describes each type of token a parser specified by OID can recog-
nize. See Section 12.8.2 for details.

ts_token_type(3722) - (1,asciiword,"Wrd, all ASCI")

ts_stat (sqlquerytext [,weightstext]) - setof record (wordtext,ndoc
i nteger,nentryinteger)
Executesthe sql quer y, which must return asinglet svect or column, and returns
statistics about each distinct lexeme contained in the data. See Section 12.4.4 for details.

ts_stat (' SELECT vector FROM apod') - (foo, 10, 15)

9.14. UUID Functions

PostgreSQL includes one function to generate a UUID:

307

Functions and Operators

gen_randomuuid () - uuid

Thisfunction returnsaversion 4 (random) UUID. Thisisthe most commonly used type of UUID and
is appropriate for most applications.

The uuid-ossp module provides additional functions that implement other standard agorithms for
generating UUIDs.

PostgreSQL also provides the usual comparison operators shown in Table 9.1 for UUIDs.

9.15. XML Functions

The functions and function-like expressions described in this section operate on values of type xmn .
See Section 8.13 for information about the xm type. The function-like expressions xni par se and
xm seri al i ze for converting to and from type xm are documented there, not in this section.

Use of most of these functions requires PostgreSQL to have been built withconfi gure --w t h-
i bxm .

9.15.1. Producing XML Content

A set of functions and function-like expressions is available for producing XML content from SQL
data. As such, they are particularly suitable for formatting query results into XML documents for
processing in client applications.

9.15.1.1. xnl comrent

xm comment (text) - xm

The function xm conmmrent creates an XML value containing an XML comment with the specified
text as content. The text cannot contain “- - ” or end with a “- ", otherwise the resulting construct
would not beavalid XML comment. If the argument is null, the result isnull.

Example:

SELECT xm conment (' hell o');
xm conment

<!--hello-->

9.15.1.2. xnl concat

xm concat (xm [, ...]) - xm

Thefunction xm concat concatenates alist of individual XML valuesto create a single value con-
taining an XML content fragment. Null values are omitted; the result is only null if there are no non-
null arguments.

Example:

308

Functions and Operators

SELECT xm concat (' <abc/>', '<bar>foo</bar>");

xm concat

<abc/ ><bar >f oo</ bar >

XML declarations, if present, are combined as follows. If al argument values have the same XML
version declaration, that version is used in the result, else no version is used. If al argument values
have the standal one declaration value “yes’, then that valueis used in the result. If all argument values
have a standalone declaration value and at least one is “no”, then that is used in the result. Else the
result will have no standal one declaration. If theresult isdetermined to require astandal one declaration
but no version declaration, a version declaration with version 1.0 will be used because XML requires
an XML declaration to contain aversion declaration. Encoding declarations are ignored and removed
inall cases.

Example:

SELECT xml concat (' <?xml version="1.1"?><foo/>", '<?xn
versi on="1.1" standal one="no"?><bar/>");

xm concat

<?xm version="1.1"?><f oo/ ><bar/ >

9.15.1.3. xnl el ement

xm el enent (NAME nanme [, XM.ATTRIBUTES (attvalue [AS attnane]
[, -...1)1 I, content [, ...]1]) - xm

Thexm el enment expression producesan XML element with the given name, attributes, and content.
Thenane and at t nane items shown in the syntax are smpleidentifiers, not values. Theat t val -
ue and cont ent itemsare expressions, which can yield any PostgreSQL datatype. The argument(s)
within XMLATTRI BUTES generate attributes of the XML element; the cont ent value(s) are con-
catenated to form its content.

Examples:

SELECT xmnl el enent (nane fo00);

xm el ement

<f oo/ >
SELECT xml el enent (nane foo, xmattributes('xyz' as bar));

xm el ement

<foo bar="xyz"/>

SELECT xml el enent (nane foo, xmattributes(current_date as bar),
‘cont', 'ent');

xm el ement

<f oo bar="2007-01- 26" >cont ent </ f oo>

309

Functions and Operators

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence xHHHH _, where HHHH is the character's Unicode codepoint in hexadec-
imal notation. For example:

SELECT xml el emrent (nanme "foo$bar", xmlattributes('xyz' as "a&b"));

xm el enent

<f 00_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column's name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this exampleisvalid:

CREATE TABLE test (a xm, b xm);
SELECT xmi el enent (nanme test, xmlattributes(a, b)) FROMtest;

But these are not:

SELECT xm el ement (nane test, xm attributes('constant'), a, b) FROM
test;
SELECT xm el ement (nane test, xm attributes(func(a, b))) FROMtest;

Element content, if specified, will be formatted according to its data type. If the content is itself of
typexm , complex XML documents can be constructed. For example:

SELECT xml el enent (nane foo, xmattributes('xyz' as bar),
xm el enent (nane abc),
xm coment ("test'),
xm el enent (nanme xyz));

xm el ement

<f oo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular
that the characters <, >, and & will be converted to entities. Binary data (data type byt ea) will
be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmibinary. The particular behavior for individual datatypesis expected to evolvein order to align the
PostgreSQL mappings with those specified in SQL:2006 and later, as discussed in Section D.3.1.3.

9.15.1.4. xnl f or est

xm forest (content [ASnane | [, ...]) - xn

Thexnl f or est expression produces an XML forest (sequence) of elements using the given names
and content. Asfor xm el enent , each nanme must be a simple identifier, whilethe cont ent ex-
pressions can have any data type.

Examples:

SELECT xmi forest('abc' AS foo, 123 AS bar);

310

Functions and Operators

xm f or est

<f oo>abc</ f oo><bar >123</ bar >

SELECT xml f orest (tabl e_nane, col unm_nane)
FROM i nf or mati on_schena. col unms
WHERE t abl e_schema = 'pg_catal og";

xm f or est

<t abl e_nane>pg_aut hi d</t abl e_name><col um_nane>r ol name</
col utm_nane>

<t abl e_nane>pg_aut hi d</t abl e_nanme><col um_nane>r ol super </
col utm_nane>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xim el enent above. Simi-
larly, content datais escaped to make valid XML content, unlessit is already of typexmn .

Note that XML forests are not valid XML documents if they consist of more than one element, so it
might be useful towrap xm f or est expressionsinxmi el ement .

9.15.1.5. xm pi

xm pi (NAME nane [, content]) - xm

Thexm pi expression createsan XML processing instruction. Asfor xml el enent , thenane must
be a simple identifier, while the cont ent expression can have any data type. The cont ent , if
present, must not contain the character sequence ?>.

Example:

SELECT xml pi (nane php, 'echo "hello world";");

<?php echo "hello world"; ?>

9.15.1.6. xnl r oot

xm root (xm, VERSION {text|NO VALUE} [, STANDALONE {YES| NO NO
VALUE}]) - xm

The xm r oot expression aters the properties of the root node of an XML value. If a version is
specified, it replacesthe valuein theroot node's version declaration; if astandal one setting is specified,
it replaces the value in the root node's standal one declaration.

SELECT xml r oot (xm par se(docunent '<?xm version="1.1"7
><cont ent >abc</content>'),

311

Functions and Operators

version '1.0', standal one yes);

<?xm version="1. 0" standal one="yes"?>
<cont ent >abc</ cont ent >

9.15.1.7. xm agg

xmagg (xm) - xm

Thefunction xm agg is, unlike the other functions described here, an aggregate function. It concate-
nates the input values to the aggregate function call, much like xm concat does, except that con-
catenation occurs across rows rather than across expressions in a single row. See Section 9.21 for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xm);
| NSERT | NTO test VALUES (1, '<foo>abc</foo>');
| NSERT | NTO test VALUES (2, '<bar/>");
SELECT xm agg(x) FROM test;
xm agg

<f oo>abc</ f oo><bar/ >

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xm agg(x ORDER BY y DESC) FROM test;
xm agg

<bar/ ><f oo>abc</f 00>
The following non-standard approach used to be recommended in previous versions, and may still be

useful in specific cases:

SELECT xm agg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xm agg

<bar/ ><f oo>abc</ f oo>

9.15.2. XML Predicates

The expressions described in this section check properties of xm values.

9.15.2.1. 1 S DOCUMENT

xm |'S DOCUMENT - bool ean

Theexpression| S DOCUMENT returnstrue if the argument XML value is a proper XML document,
faseif itisnot (that is, itisacontent fragment), or null if the argument is null. See Section 8.13 about
the difference between documents and content fragments.

312

Functions and Operators

9.15.2.2.1 S NOT' DOCUMENT

xm 'S NOT DOCUVENT - bool ean

The expression | S NOT DOCUNMENT returns false if the argument XML value is a proper XML
document, trueif it is not (that is, it is a content fragment), or null if the argument is null.

9.15.2.3. XMLEXI STS

XMLEXI STS (text PASSI NG [BY { REF| VALUE}] xm [BY
{REF| VALUE}]) - bool ean

The function xm exi st s evaluates an XPath 1.0 expression (the first argument), with the passed
XML value as its context item. The function returns false if the result of that evaluation yields an
empty node-set, trueif it yields any other value. The function returns null if any argument is null. A
nonnull value passed as the context item must be an XML document, not a content fragment or any
non-XML value.

Example:

SELECT xm exists('//town[text() = "'Toronto'']"' PASSI NG BY VALUE
' <t owns><t own>Tor ont o</ t own><t own>Ct t awa</ t own></t owns>');

xm exi sts

The BY REF and BY VALUE clauses are accepted in PostgreSQL, but are ignored, as discussed in
Section D.3.2.

In the SQL standard, thexm exi st s function evaluates an expression in the XML Query language,
but PostgreSQL allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.15.24.xm is well forned

xm _is well formed (text) - bool ean
xm _is_well_formed_docunment (text) - boolean
xm _is_well_formed_content (text) - bool ean

These functions check whether a t ext string represents well-formed XML, returning a Boolean
result. xm _is_well formed_docunent checks for a well-formed document, while xm
I _is_well_fornmed_content checksfor well-formed content. xm _i s_wel | _f or med does
the former if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to
CONTENT. Thismeansthat xm _is_wel | _f or ned isuseful for seeing whether a simple cast to
typexm will succeed, whereas the other two functions are useful for seeing whether the correspond-
ing variants of XMLPARSE will succeed.

Examples:

SET xm opti on TO DOCUMENT;
SELECT xm _is_well _forned('<>");

313

Functions and Operators

xm _is well formed

SELECT xm _is_wel | _forned(' <abc/>");
xm _is well formed

SET xm opti on TO CONTENT;
SELECT xm _is_well _formed(' abc');
xm _is well formed

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ st uf f">bar </ pg: f 00>") ;
xm _is well formed_docunent

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ stuff">bar</my:foo>");
xm _is well formed_docunent

The last exampl e shows that the checks include whether namespaces are correctly matched.

9.15.3. Processing XML

To process values of datatype xmi , PostgreSQL offers the functions xpat h and xpat h_exi st s,
which evaluate XPath 1.0 expressions, and the XML TABLE table function.

9.15.3.1. xpat h

xpath (xpath text, xml xml [, nsarray text[]]) - xm[]

The function xpat h evaluates the XPath 1.0 expression xpat h (given as text) against the XML
value xm . It returns an array of XML values corresponding to the node-set produced by the XPath
expression. |f the X Path expression returnsa scalar value rather than anode-set, asingle-element array
isreturned.

The second argument must be awell formed XML document. In particular, it must have asingle root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be
atwo-dimensional t ext array with the length of the second axis being equal to 2 (i.e., it should be
an array of arrays, each of which consists of exactly 2 elements). Thefirst element of each array entry
is the namespace name (alias), the second the namespace URI. It is not required that aliases provided
in this array be the same as those being used in the XML document itself (in other words, both in the
XML document and in the xpat h function context, aliases are local).

314

Functions and Operators

Example:

SELECT xpath('/ny:a/text()', '<ny:a xmns:ny="http://
exanpl e. conf' >t est </ nmy: a>' ,
ARRAY[ARRAY[' ny', 'http://exanple.conm]]);

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', '<a xm ns="http://
exanpl e. con' >t est </ b></ a>',
ARRAY[ARRAY[' nydefns', 'http://exanple.com]]);

9.15.3.2. xpat h_exi st s

xpath_exists (xpath text, xm xm [, nsarray text[]]) - bool ean

Thefunction xpat h_exi st s isaspeciaized form of the xpat h function. Instead of returning the
individual XML valuesthat satisfy the XPath 1.0 expression, thisfunction returnsaBoolean indicating
whether the query was satisfied or not (specifically, whether it produced any value other than an empty
node-set). Thisfunction is equivalent to the XMLEXI STS predicate, except that it also offers support
for a namespace mapping argument.

Example:

SELECT xpath_exists('/ny:altext()', '"<ny:a xmns:nmy="http://
exanpl e. con' >t est </ ny: a>' ,
ARRAY[ARRAY[' ny', 'http://exanple.com]]);

xpat h_exi sts

9.15.3.3. xnl t abl e

XMLTABLE (
[XMLNAMESPACES (nanespace_uri AS nanespace_nanme [, ...]),]
row_expressi on PASSI NG [BY { REF| VALUE}] docunent _expression [BY
{ REF| VALUE}]
COLUMWNS name { type [PATH col um_expr essi on]
[DEFAULT defaul t _expression] [NOT NULL | NULL]
| FOR ORDI NALITY }

[, ...

315

Functions and Operators

) - setof record

Thexml t abl e expression produces atable based on an XML value, an XPath filter to extract rows,
and a set of column definitions. Although it syntactically resembles a function, it can only appear as
atablein aquery's FROMclause.

The optional XML NANMESPACES clause gives acomma-separated list of namespace definitions, where
each nanespace_uri isat ext expression and each nanmespace_nane isasimple identifier.
It specifies the XML namespaces used in the document and their aliases. A default namespace spec-
ification is not currently supported.

Therequired r ow_expr essi on argument isan XPath 1.0 expression (given ast ext) that iseval-
uated, passing the XML valuedocunent _expr essi on asitscontext item, to obtain aset of XML
nodes. These nodes are what xni t abl e transforms into output rows. No rows will be produced if
the docunent _expr essi on isnull, nor if ther ow_expr essi on produces an empty node-set
or any value other than a node-set.

docunent _expr essi on providesthe context item for ther ow_expr essi on. It must beawell-
formed XML document; fragments/forests are not accepted. The BY REF and BY VALUE clauses
are accepted but ignored, as discussed in Section D.3.2.

Inthe SQL standard, thexm t abl e function evaluates expressionsin the XML Query language, but
PostgreSQL allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The required COLUMNS clause specifies the column(s) that will be produced in the output table. See
the syntax summary above for theformat. A nameisrequired for each column, asisadatatype (unless
FOR ORDI NALI TY is specified, in which case type i nt eger isimplicit). The path, default and
nullability clauses are optional.

A column marked FOR ORDI NALI TY will be populated with row numbers, starting with 1, in the
order of nodes retrieved from ther ow_expr essi on'sresult node-set. At most one column may be
marked FOR ORDI NALI TY.

Note

XPath 1.0 does not specify an order for nodesin anode-set, so code that relies on a particular
order of theresultswill beimplementation-dependent. Detailscan befoundin Section D.3.1.2.

Thecol um_expr essi on for acolumnisan XPath 1.0 expression that is evaluated for each row,
with the current node from ther ow_expr essi on result asits context item, to find the value of the
column. If no col umm_expr essi on isgiven, then the column nameis used as an implicit path.

If acolumn's X Path expression returnsanon-XML value (whichislimited to string, boolean, or double
in XPath 1.0) and the column has a PostgreSQL type other than xm , the column will be set as if
by assigning the value's string representation to the PostgreSQL type. (If the value is a boolean, its
string representation is taken to be 1 or 0 if the output column's type category is numeric, otherwise
trueorfal se.)

If acolumn's XPath expression returns a non-empty set of XML nodes and the column's PostgreSQL
type isé xn , the column will be assigned the expression result exactly, if it is of document or content
form.

A non-XML result assigned to an xm output column produces content, a single text node with the
string value of the result. An XML result assigned to a column of any other type may not have more

2 A result containing more than one element node at the top level, or non-whitespace text outside of an element, is an example of content form.
An XPath result can be of neither form, for exampleif it returns an attribute node selected from the element that containsit. Such aresult will
be put into content form with each such disallowed node replaced by its string value, as defined for the XPath 1.0 st r i ng function.

316

Functions and Operators

than onenode, or an error israised. If thereisexactly onenode, the columnwill be set asif by assigning
the node's string value (as defined for the XPath 1.0 st r i ng function) to the PostgreSQL type.

Thestring value of an XML element isthe concatenation, in document order, of all text nodescontained
in that element and its descendants. The string value of an element with no descendant text nodes
isan empty string (not NULL). Any xsi : ni | attributes are ignored. Note that the whitespace-only
t ext () node between two non-text elementsis preserved, and that leading whitespaceon at ext ()
node is not flattened. The XPath 1.0 st ri ng function may be consulted for the rules defining the
string value of other XML node types and non-XML values.

The conversion rules presented here are not exactly those of the SQL standard, as discussed in Sec-
tion D.3.1.3.

If the path expression returns an empty node-set (typically, whenit does not match) for agiven row, the
columnwill besetto NULL, unlessadef aul t _expr essi on is specified; then the value resulting
from evaluating that expression is used.

A def aul t _expr essi on, rather than being evaluated immediately when xmi t abl e is called,
is evaluated each time a default is needed for the column. If the expression qualifies as stable or im-
mutable, the repeat eval uation may be skipped. This meansthat you can usefully use volatile functions
likenext val indefaul t _expression.

Columns may be marked NOT NULL. If thecol unm_expr essi on foraNOT NULL column does
not match anything and thereisno DEFAULT or thedef aul t _expr essi on aso evaluatesto null,
an error is reported.

Examples:

CREATE TABLE xnl data AS SELECT
xm $$
<RONG>
<ROWid="1">
<COUNTRY_| D>AU</ COUNTRY_| D>
<COUNTRY_NAME>Aust r al i a</ COUNTRY_NANME>
</ RON
<ROW i d="5">
<COUNTRY_| D>JP</ COUNTRY_| D>
<COUNTRY_NAME>Japan</ COUNTRY_NANME>
<PREM ER _NAME>Shi nzo Abe</ PREM ER_NAME>
<SI ZE uni t ="sq_m ">145935</ S| ZE>
</ RON
<ROW i d="6">
<COUNTRY_| D>SG</ COUNTRY_| D>
<COUNTRY_NAME>Si ngapor e</ COUNTRY_NAME>
<SI ZE uni t ="sq_kn' >697</ S| ZE>
</ RON
</ ROAG>
$$ AS dat a;

SELECT xm table. *
FROM xmi dat a,
XMLTABLE("' / / ROAB/ ROW

PASSI NG dat a

COLUMNS id int PATH'@d',
ordinality FOR ORDI NALITY,
" COUNTRY_NAME" t ext,
country id text PATH ' COUNTRY_ID ,
size_sq_kmfloat PATH 'SIZE @nit =

"sq_kn']"',

317

Functions and Operators

si ze_other text PATH
‘concat (SI ZE[f @nit! ="sq_kni], " ",
SIZE[@ni t! ="sq_kni]/@nit)"’,
prem er_nane text PATH ' PREM ER_NAME
DEFAULT ' not specified');

id | ordinality | COUNTRY_NAME | country id | size_sq_km|

Size_other | premnier_nane
T T o m e o - - o m e o - -
T o e e e e oo - -

1| 1| Australia | AU | |

| not specified

5| 2 | Japan | JP | | 145935
sg_m | Shinzo Abe

6 | 3 | Singapore | SG | 697 |

| not specified

The following example shows concatenation of multiple text() nodes, usage of the column name as
XPath filter, and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xnl el enents AS SELECT

xm $$

<r oot >

<el ement > Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> Dbbb<x>xxx</
x>CC </elenment>

</root >
$$ AS dat a;

SELECT xni table.*
FROM xm el enents, XM.TABLE('/root' PASSI NG data COLUWNS el enent
text);

Hel | 02a2 bbbxxxCC

The following example illustrates how the XML NAMESPACES clause can be used to specify alist of
namespaces used in the XML document as well asin the X Path expressions:

W TH xm dat a(data) AS (VALUES ('
<exanpl e xm ns="http://exanple.confnyns" xmns: B="http://
exanpl e. conf b" >
<item foo="1" B:bar="2"/>
<item foo="3" B:bar="4"/>
<item foo="4" B:bar="5"/>
</ exanmpl e>'::xm)
)
SELECT xm table. *
FROM XMLTABLE(XMLNAMESPACES(' htt p: // exanpl e. com nmyns' AS X,
"http://exanple.comb' AS "B"),
"/ x:exanpl e/ x:item
PASSI NG (SELECT data FROM xml dat a)
COLUWNS foo int PATH ' @ oo',
bar int PATH ' @B: bar');

foo | bar
_____ [
1] 2
3 4

318

Functions and Operators

4 | 5
(3 rows)

9.15.4. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought
of as XML export functionality:

table to xm (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
query to_xm (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
cursor_to xm (cursor refcursor, count integer, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

tabl e_t o_xm mapsthe content of the named table, passed as parameter t abl e. Ther egcl ass
type accepts stringsidentifying tables using the usual notation, including optional schemaqualification
and double quotes (see Section 8.19 for details). query_t o_xml executes the query whose text is
passed as parameter quer y and mapstheresult set. cur sor _t o_xmnl fetchesthe indicated number
of rows from the cursor specified by the parameter cur sor . This variant is recommended if large
tables have to be mapped, because the result value is built up in memory by each function.

If t abl ef or est isfase, then the resulting XML document looks like this:
<t abl enane>
<r ow>
<col umnanel>dat a</ col utmnanel>

<col umnane2>dat a</ col umnane2>
</ row>

<r ow>
</ row>
</ t abl enane>

If t abl ef or est istrue, theresult isan XML content fragment that looks like this:
<t abl enanme>
<col umnanel>dat a</ col utmnanel>

<col umnane2>dat a</ col utmnane2>
</t abl enanme>

<t abl enanme>

</t abl enanme>

If no table name is available, that is, when mapping a query or a cursor, the string t abl e isused in
the first format, r owin the second format.

The choice between these formats is up to the user. The first format is a proper XML document,
which will beimportant in many applications. The second format tends to be more useful inthecur -

319

Functions and Operators

sor _to_xm function if the result values are to be reassembled into one document later on. The
functions for producing XML content discussed above, in particular xnl el enent , can be used to
alter the results to taste.

The data values are mapped in the same way as described for the function xm el ermrent above.

The parameter nul | s determines whether null values should be included in the output. If true, null
valuesin columns are represented as:

<col umnane xsi:nil="true"/>

where xsi isthe XML namespace prefix for XML Schema Instance. An appropriate namespace de-
claration will be added to the result value. If false, columns containing null values are simply omitted
from the output.

The parameter t ar get ns specifiesthe desired XML namespace of the result. If no particular name-
space is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table_to_xm schema (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
query_to_xm schema (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
cursor_to_xm schema (cursor refcursor, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

It is essential that the same parameters are passed in order to obtain matching XML data mappings
and XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing
results are wanted:

table_to _xm _and_xm schema (table regclass, nulls bool ean,
t abl ef orest bool ean, targetns text
) - xm
query to xm _and xm schema (query text, nulls bool ean,
t abl ef orest bool ean, targetns text

) - xm

In addition, the following functions are available to produce anal ogous mappings of entire schemas
or the entire current database:

schema_to_xm (schema name, nulls bool ean,
t abl ef orest bool ean, targetns text) - xm
schema_to_xm schema (schema name, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
schema_to_xm _and_xm schema (schema name, nulls bool ean,
t abl ef orest bool ean, targetns text

) - xm

320

Functions and Operators

dat abase_to_xm (nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
dat abase _to _xm schema (nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

dat abase_to_xm _and_xm schema (nulls bool ean,
t abl ef orest bool ean, targetns text

) - xm

These functions ignore tables that are not readable by the current user. The database-wide functions
additionally ignore schemas that the current user does not have USAGE (lookup) privilege for.

Note that these potentially produce alot of data, which needsto be built up in memory. When request-
ing content mappings of large schemas or databases, it might be worthwhile to consider mapping the
tables separately instead, possibly even through a cursor.

Theresult of a schema content mapping looks like this:

<schemananme>
t abl el- mappi ng

t abl e2- mappi ng

</ schemanane>
where the format of atable mapping dependson thet abl ef or est parameter as explained above.

Theresult of a database content mapping looks like this:

<dbnane>
<schenmalnane>
</§éhenalnane>
<schenma2nane>

</ schema2nane>

</ dbnanme>
where the schema mapping is as above.

As an example of using the output produced by these functions, Example 9.1 shows an XSLT
stylesheet that converts the output of t abl e_t o_xm _and_xm schena to an HTML document
containing a tabular rendition of the table data. In a similar manner, the results from these functions
can be converted into other XML-based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output toHTML

<?xm version="1.0"?>
<xsl : styl esheet version="1.0"

321

Functions and Operators

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. org/ 1999/ xht m "

<xsl : out put net hod="xm "
doct ype-system="http://ww. wW3. or g/ TR/ xht m 1/ DTDY xht m 1-
strict.dtd"
doct ype-public="-//WBC/DTD XHTML 1.0 Strict//EN'
i ndent ="yes"/>

<xsl:tenplate match="/*">
<xsl :vari abl e name="schem" sel ect="//xsd: schema"/>
<xsl :vari abl e name="t abl et ypenane”
sel ect =" $schema/
xsd: el ement [@anme=nanme(current())]/ @ype"/ >
<xsl :vari abl e name="r owt ypenane"
sel ect =" $schena/ xsd: conpl exType[@ane=
$t abl et ypenane] / xsd: sequence/ xsd: el ement [@ame="row]/ @ype"/ >

<htm >

<head>

<title><xsl:val ue-of select="name(current())"/></title>
</ head>
<body>

<t abl e>

<tr>
<xsl : for-each sel ect ="$schema/ xsd: conpl exType[@ane=
$rowt ypenane] / xsd: sequence/ xsd: el ement / @ane" >

<t h><xsl : val ue-of select="."/></th>
</ xsl : for-each>
</[tr>

<xsl :for-each sel ect="row'>

<tr>
<xsl :for-each select="*">
<t d><xsl : val ue-of select="."/></td>
</ xsl :for-each>
</[tr>
</ xsl :for-each>
</t abl e>
</ body>
</htnl >

</ xsl : tenpl at e>

</ xsl : styl esheet >

9.16. JSON Functions and Operators

This section describes:
« functions and operators for processing and creating JSON data
 the SQL/JSON path language

To provide native support for JSON data types within the SQL environment, PostgreSQL implements
the SQL/JSON data model. This model comprises sequences of items. Each item can hold SQL scalar
values, with an additional SQL/JSON null value, and composite data structures that use JSON arrays

322

Functions and Operators

and o3bj ects. The model is aformalization of the implied data model in the JSON specification RFC
7159°,

SQL/JSON allows you to handle JSON data alongside regular SQL data, with transaction support,
including:

» Uploading JSON datainto the database and storing it in regular SQL columns as character or binary
strings.

» Generating JSON objects and arrays from relational data.
* Querying JSON data using SQL/JSON query functions and SQL/JSON path language expressions.

Tolearn moreabout the SQL/JSON standard, see[sgltr-19075-6]. For details on JSON types supported
in PostgreSQL , see Section 8.14.

9.16.1. Processing and Creating JSON Data

Table 9.45 shows the operators that are available for use with JISON data types (see Section 8.14).
In addition, the usual comparison operators shown in Table 9.1 are available for j sonb, though not
for j son. The comparison operators follow the ordering rules for B-tree operations outlined in Sec-
tion 8.14.4. See aso Section 9.21 for the aggregate function j son_agg which aggregates record
values as JSON, the aggregate function j son_obj ect _agg which aggregates pairs of values into
aJSON object, and their j sonb equivalents, j sonb_agg andj sonb_obj ect _agg.

Table9.45.) son and j sonb Operators

Operator
Description
Example(s)

json->integer - json

jsonb->integer - jsonb
Extracts n'th element of JSON array (array elements are indexed from zero, but negative
integers count from the end).
"[{"a":"fo0"},{"b":"bar"},{"c":"baz"}]"::json -> 2 -
{"c":"baz"}
"[{"a":"fo0"}, {"b":"bar"},{"c":"baz"}]"'::json -> -3 -
{"a":"fo0"}

json->text - json

jsonb->text - jsonb
Extracts JSON object field with the given key.

“{"a": {"b":"foo"}}" ::json ->"'a - {"b":"fo0"}

json->>integer - text

j sonb->>integer - text
Extracts n'th element of JSON array, ast ext .

"[1,2,3]'::json ->> 2 5 3

json->>text - text

jsonb->>text - text
Extracts JSON object field with the given key, ast ext .

"{"a":1,"b":2}'::json ->> "'b'" - 2

json#>text[] - json

3 https://datatracker.ietf.org/doc/html/rfc7159

323

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Functions and Operators

Operator
Description
Example(s)

jsonb#>text[] - jsonb
Extracts JSON sub-object at the specified path, where path elements can be either field
keys or array indexes.

"{"a": {"b": ["foo","bar"]}} ::json #> '{a,b,1}" - "bar”

json#>>text[] - text

jsonb#>>text[] - text
Extracts JSON sub-object at the specified path ast ext .

“{"a": {"b": ["foo","bar"]}} ::json #>> '{a,b,1}' - bar

Note

Thefield/element/path extraction operatorsreturn NULL, rather than failing, if the JSON input
does not have the right structure to match the request; for example if no such key or array
element exists.

Some further operators exist only for j sonb, as shown in Table 9.46. Section 8.14.4 describes how
these operators can be used to effectively search indexed j sonb data.

Table 9.46. Additional | sonb Operators

Operator
Description
Example(s)

j sonb @ j sonb - bool ean
Does the first JSON value contain the second? (See Section 8.14.3 for details about con-
tainment.)

"{"a":1, "b":2}'::jsonb @ '{"b":2}'::jsonb >t

j sonb <@j sonb - bool ean
Isthe first JSON value contained in the second?

"{"b":2}'::jsonb <@'{"a":1, "b":2}" ::jsonb >t

j sonb ?text - bool ean
Does the text string exist as atop-level key or array element within the JSON value?

"{"a":1, "b":2}'::jsonb ? 'b'" 1t
l[llall’ Ilbll’ IICII]I::jsonb ? lbl _}t

jsonb?| text[] - bool ean
Do any of the stringsin the text array exist astop-level keys or array elements?

"{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd'] -t

jsonb ?&text[] — bool ean
Do all of the stringsin the text array exist as top-level keys or array elements?

"["a", "b", "c"]'::jsonb ?& array['a', 'b'] >t

jsonb|]| jsonb - jsonb
Concatenatestwo j sonb values. Concatenating two arrays generates an array containing
all the elements of each input. Concatenating two objects generates an object containing
the union of their keys, taking the second object's value when there are duplicate keys.

324

Functions and Operators

Operator
Description
Example(s)

All other cases are treated by converting a non-array input into a single-element array,
and then proceeding as for two arrays. Does not operate recursively: only the top-level
array or object structure is merged.

‘["a", "b"]'::jsonb || '["a", "d"]'::jsonb - ["a", "b", "a",
lldll]

"{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb - {"a": "b", "c":
lldll}

"1, 2]'::jsonb || "3'::jsonb - [1, 2, 3]

"{"a": "b"}'::jsonb || "42'::jsonb - [{"a": "b"}, 42]

To append an array to another array asasingle entry, wrap it in an additional layer of ar-
ray, for example:

"1, 2]'::jsonb || jsonb build array('[3, 4]'::jsonb) - [1,
2, [3, 4]]

jsonb- text - jsonb
Deletes a key (and its value) from a JSON object, or matching string value(s) from a
JSON array.

“{"a": "b", "c": "d"}'::jsonb - "a' - {"c": "d"}
‘["a", "b", "c", "b"]'::jsonb - '"b'" ~["a", "c"]

jsonb- text[] - jsonb
Deletes all matching keys or array elements from the left operand.

"{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[] - {}

jsonb- integer - jsonb
Deletes the array element with specified index (negative integers count from the end).
Throws an error if JSON valueis not an array.

"["a", "b"]"::jsonb - 1 - ["a"]

jsonb#- text[] - jsonb
Deletesthe field or array element at the specified path, where path elements can be either
field keys or array indexes.

"["a", {"b":1}]"::jsonb #- '{1,b}' -["a", {}]

j sonb @ j sonpat h - bool ean
Does JSON path return any item for the specified JSON value?

"{"a":[1,2,3,4,5]} ::jsonb @ '$.a[*] ? (@> 2)' —t

j sonb @@j sonpat h - bool ean
Returns the result of a JSON path predicate check for the specified JSON value. Only the
first item of the result istaken into account. If the result is not Boolean, then NULL isre-
turned.

"{"a":[1,2,3,4,5]} ::jsonb @' $.a[*] > 2' -t

Note

Thej sonpat h operators @ and @@suppress the following errors: missing object field or
array element, unexpected JSON item type, datetime and numeric errors. The j sonpat h-
related functions described below can aso be told to suppress these types of errors. This be-
havior might be helpful when searching JSON document collections of varying structure.

325

Functions and Operators

Table 9.47 shows the functions that are available for constructing j son and j sonb values. Some
functions in this table have a RETURNI NG clause, which specifies the data type returned. It must be
oneof j son,j sonb, byt ea, acharacter stringtype(t ext ,char, or var char), or atypethat can
becast to | son. By default, thej son typeis returned.

Table9.47. JSON Creation Functions

Function
Description
Example(s)

to_json (anyel ement) - json

to_jsonb (anyel enent) - j sonb
Convertsany SQL valuetoj son or j sonb. Arrays and composites are converted recur-
sively to arrays and objects (multidimensional arrays become arrays of arraysin JSON).
Otherwise, if thereis a cast from the SQL datatypetoj son, the cast function will be
used to perform the conversion;? otherwise, a scalar JSON value is produced. For any
scalar other than a number, a Boolean, or anull value, the text representation will be
used, with escaping as necessary to make it avalid JSON string value.

to_ json('Fred said "H .""::text) - "Fred said \"Hi .\""
to_jsonb(row(42, 'Fred said "H ."'::text)) - {"f1": 42,
"f2": "Fred said \"Hi .\""}

array_to_json(anyarray [,boolean]) - json
Converts an SQL array to a JSON array. The behavior isthesameast 0_j son except
that line feeds will be added between top-level array elements if the optional boolean pa-
rameter istrue.

array_to_json('{{1,5},{99,100}}'::int[]) - [[1,5],[99, 100]]

json_array ([{ val ue_expressi on [FORMAT JSON]} [,..]1[{ NULL | ABSENT }
ON NULL] [RETURNI NGdat a_t ype [FORMAT JSON[ENCODI NG UTF8]]])

json_array ([query_expression][RETURNI NGdat a_t ype [FORVAT JSON|
ENCODI NG UTF8111)
Constructs a JSON array from either aseries of val ue_expr essi on parameters or
from the results of quer y_expr essi on, which must be a SELECT query returning a
single column. If ABSENT ON NULL is specified, NULL valuesareignored. Thisisal-
waysthe caseif aquery_expressi on isused.

json_array(1l,true,json '{"a":null}") -[1, true, {"a":null}]
json_array(SELECT * FROM (VALUES(1),(2)) t) -[1, 2]

row to_json(record[,boolean]) - json
Converts an SQL composite value to a JSON object. The behavior isthesameasto_j -
son except that line feeds will be added between top-level elementsif the optional
boolean parameter istrue.

row to_json(row(1l,'foo')) - {"f1":1,"f2":"foo"}

json_build_array (VAR ADI C"any") - j son

j sonb_buil d_array (VAR ADI C"any") - j sonb
Builds a possibly-heterogeneously-typed JSON array out of avariadic argument list.
Each argument is converted aspert o_j sonort o_j sonb.

json_build_array(1, 2, 'foo', 4, 5) -[1, 2, "foo", 4, 5]

json_build_object (VAR ADI C"any") - j son
j sonb_buil d_object (VARI ADI C"any") - j sonb
Builds a JSON object out of avariadic argument list. By convention, the argument list

consists of alternating keys and values. Key arguments are coerced to text; value argu-
ments are converted aspert o_j sonort o_j sonb.

326

Functions and Operators

Function
Description
Example(s)

json_build_object('foo', 1, 2, row(3,'bar')) - {"foo" : 1,
"2t o {"f1":3,"f2":"bar"}}

j son_obj ect ([{ key_expressi on{ VALUE|"'} val ue_expressi on [FORVAT
JSON[ENCODI NG UTF8 113}, ...J 1 [{ NULL |ABSENT } ON NULL][{ W TH|
W THOUT } UNI QUE[KEYS]][RETURNI NGdat a_t ype [FORVAT JSON[EN-
CODI NG UTF8]111)
Constructs a JSON object of all the key/value pairs given, or an empty object if none are
given. key_expr essi on isascalar expression defining the JSON key, which is con-
verted to thet ext type. It cannot be NULL nor can it belong to atype that has a cast to
thej son type. If W TH UNI QUE KEYS is specified, there must not be any duplicate
key_expressi on. Any pair for which theval ue_expr essi on evaluatesto NULL
is omitted from the output if ABSENT ON NULL isspecified; if NULL ON NULL is
specified or the clause omitted, the key is included with value NULL.
j son_object (' code' VALUE 'P123', 'title': '"Jaws') -
{"code" : "P123", "title" : "Jaws"}

j son_object (text[]) - json

j sonb_object (text[]) - jsonb
Builds a JSON object out of atext array. The array must have either exactly one di-
mension with an even number of members, in which case they are taken as aternating
key/value pairs, or two dimensions such that each inner array has exactly two elements,
which are taken as akey/value pair. All values are converted to JSON strings.

json_object('{a, 1, b, "def", ¢, 3.5}") - {"a" : "1", "b"
n def n , n Cll : n 3. 5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') - {"a" : "1",
n bll . n def n , n Cll . n 3. 5"}

j son_obj ect (keystext[],valuestext[]) - json

j sonb_obj ect (keystext[],valuestext[]) - jsonb
Thisform of j son_obj ect takes keys and values pairwise from separate text arrays.
Otherwiseit isidentical to the one-argument form.
json_object('{a, b}, "{21,2}") - {"a": "1", "b": "2"}

&For example, the hstore extension has a cast from hst or e toj son, sothat hst or e values converted viathe JSON creation
functions will be represented as JSON objects, not as primitive string values.

Table 9.48 details SQL/JSON facilities for testing JSON.

Table 9.48. SQL/JSON Testing Functions

Function signature
Description
Example(s)

expression| S[NOT]JSON[{ VALUE | SCALAR| ARRAY |OBJECT } T [{ W TH|
W THOUT } UNI QUE[KEYS]]
This predicate tests whether expr essi on can be parsed as JSON, possibly of a spec-
ified type. If SCALAR or ARRAY or OBJECT is specified, the test is whether or not the
JSON isof that particular type. If W TH UNI QUE KEYS is specified, then any object in
theexpr essi on isalso tested to seeif it has duplicate keys.

SELECT j s,
js IS JSON "json?",
js I'S JSON SCALAR "scal ar ?",

327

Functions and Operators

Function signature
Description
Example(s)

js I'S JSON OBJECT "object?",
js I'S JSON ARRAY "array?"
FROM (VALUES
(*123"), (""abc""), ("{"a": "b"}"), ("[1,2]"),
("abc’)) foo(js);

is | json? | scalar? | object? | array?
------------ T L gy
123 | t | t | f | f
"abc | t | t | f | f
{"a": "b"} | t | f | t | f
[1,2] |t | f | i |t
abc | f | f | f | f
SELEC