/* $NetBSD: rk_gpio.c,v 1.8 2025/06/03 18:26:38 rjs Exp $ */ /*- * Copyright (c) 2018 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: rk_gpio.c,v 1.8 2025/06/03 18:26:38 rjs Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #define GPIO_SWPORTA_DR_REG 0x0000 #define GPIO_SWPORTA_DDR_REG 0x0004 #define GPIO_INTEN_REG 0x0030 #define GPIO_INTMASK_REG 0x0034 #define GPIO_INTTYPE_LEVEL_REG 0x0038 #define GPIO_INT_POLARITY_REG 0x003c #define GPIO_INT_STATUS_REG 0x0040 #define GPIO_INT_RAWSTATUS_REG 0x0044 #define GPIO_DEBOUNCE_REG 0x0048 #define GPIO_PORTA_EOI_REG 0x004c #define GPIO_EXT_PORTA_REG 0x0050 #define GPIO_LS_SYNC_REG 0x0060 #define GPIO_VER_ID_REG 0x0078 #define GPIO_VER_ID_GPIOV2 0x0101157c /* * In "version 2" GPIO controllers, half of each register is used by the * write_enable mask, so the 32 pins are spread over two registers. * * pins 0 - 15 go into the GPIO_SWPORT_*_L register * pins 16 - 31 go into the GPIO_SWPORT_*_H register */ #define GPIOV2_SWPORT_DR_BASE 0x0000 #define GPIOV2_SWPORT_DR_REG(pin) \ (GPIOV2_SWPORT_DR_BASE + GPIOV2_REG_OFFSET(pin)) #define GPIOV2_SWPORT_DDR_BASE 0x0008 #define GPIOV2_SWPORT_DDR_REG(pin) \ (GPIOV2_SWPORT_DDR_BASE + GPIOV2_REG_OFFSET(pin)) #define GPIOV2_EXT_PORT_REG 0x0070 #define GPIOV2_REG_OFFSET(pin) (((pin) >> 4) << 2) #define GPIOV2_DATA_MASK(pin) (__BIT((pin) & 0xF)) #define GPIOV2_WRITE_MASK(pin) (__BIT(((pin) & 0xF) | 0x10)) static const struct device_compatible_entry compat_data[] = { { .compat = "rockchip,gpio-bank" }, DEVICE_COMPAT_EOL }; struct rk_gpio_eint { int (*eint_func)(void *); void *eint_arg; bool eint_mpsafe; int eint_num; }; struct rk_gpio_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; kmutex_t sc_lock; struct gpio_chipset_tag sc_gp; gpio_pin_t sc_pins[32]; device_t sc_gpiodev; void *sc_ih; struct rk_gpio_eint sc_eint[32]; }; struct rk_gpio_pin { struct rk_gpio_softc *pin_sc; u_int pin_nr; int pin_flags; bool pin_actlo; }; #define RD4(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define WR4(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) static int rk_gpio_match(device_t, cfdata_t, void *); static void rk_gpio_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(rk_gpio, sizeof(struct rk_gpio_softc), rk_gpio_match, rk_gpio_attach, NULL, NULL); static void * rk_gpio_acquire(device_t dev, const void *data, size_t len, int flags) { struct rk_gpio_softc * const sc = device_private(dev); struct rk_gpio_pin *gpin; const u_int *gpio = data; if (len != 12) return NULL; const uint8_t pin = be32toh(gpio[1]) & 0xff; const bool actlo = be32toh(gpio[2]) & 1; if (pin >= __arraycount(sc->sc_pins)) return NULL; sc->sc_gp.gp_pin_ctl(sc, pin, flags); gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP); gpin->pin_sc = sc; gpin->pin_nr = pin; gpin->pin_flags = flags; gpin->pin_actlo = actlo; return gpin; } static void rk_gpio_release(device_t dev, void *priv) { struct rk_gpio_softc * const sc = device_private(dev); struct rk_gpio_pin *pin = priv; KASSERT(sc == pin->pin_sc); sc->sc_gp.gp_pin_ctl(sc, pin->pin_nr, GPIO_PIN_INPUT); kmem_free(pin, sizeof(*pin)); } static int rk_gpio_read(device_t dev, void *priv, bool raw) { struct rk_gpio_softc * const sc = device_private(dev); struct rk_gpio_pin *pin = priv; int val; KASSERT(sc == pin->pin_sc); val = sc->sc_gp.gp_pin_read(sc, pin->pin_nr); if (!raw && pin->pin_actlo) val = !val; return val; } static void rk_gpio_write(device_t dev, void *priv, int val, bool raw) { struct rk_gpio_softc * const sc = device_private(dev); struct rk_gpio_pin *pin = priv; KASSERT(sc == pin->pin_sc); if (!raw && pin->pin_actlo) val = !val; sc->sc_gp.gp_pin_write(sc, pin->pin_nr, val); } static struct fdtbus_gpio_controller_func rk_gpio_funcs = { .acquire = rk_gpio_acquire, .release = rk_gpio_release, .read = rk_gpio_read, .write = rk_gpio_write, }; static int rk_gpio_pin_read(void *priv, int pin) { struct rk_gpio_softc * const sc = priv; uint32_t data; int val; KASSERT(pin < __arraycount(sc->sc_pins)); const uint32_t data_mask = __BIT(pin); /* No lock required for reads */ data = RD4(sc, GPIO_EXT_PORTA_REG); val = __SHIFTOUT(data, data_mask); return val; } static void rk_gpio_pin_write(void *priv, int pin, int val) { struct rk_gpio_softc * const sc = priv; uint32_t data; KASSERT(pin < __arraycount(sc->sc_pins)); const uint32_t data_mask = __BIT(pin); mutex_enter(&sc->sc_lock); data = RD4(sc, GPIO_SWPORTA_DR_REG); if (val) data |= data_mask; else data &= ~data_mask; WR4(sc, GPIO_SWPORTA_DR_REG, data); mutex_exit(&sc->sc_lock); } static void rk_gpio_pin_ctl(void *priv, int pin, int flags) { struct rk_gpio_softc * const sc = priv; uint32_t ddr; KASSERT(pin < __arraycount(sc->sc_pins)); mutex_enter(&sc->sc_lock); ddr = RD4(sc, GPIO_SWPORTA_DDR_REG); if (flags & GPIO_PIN_INPUT) ddr &= ~__BIT(pin); else if (flags & GPIO_PIN_OUTPUT) ddr |= __BIT(pin); WR4(sc, GPIO_SWPORTA_DDR_REG, ddr); mutex_exit(&sc->sc_lock); } static int rk_gpio_v2_pin_read(void *priv, int pin) { struct rk_gpio_softc * const sc = priv; uint32_t data; int val; KASSERT(pin < __arraycount(sc->sc_pins)); const uint32_t data_mask = __BIT(pin); /* No lock required for reads */ data = RD4(sc, GPIOV2_EXT_PORT_REG); val = __SHIFTOUT(data, data_mask); return val; } static void rk_gpio_v2_pin_write(void *priv, int pin, int val) { struct rk_gpio_softc * const sc = priv; uint32_t data; KASSERT(pin < __arraycount(sc->sc_pins)); const uint32_t write_mask = GPIOV2_WRITE_MASK(pin); /* No lock required for writes on v2 controllers */ data = val ? GPIOV2_DATA_MASK(pin) : 0; WR4(sc, GPIOV2_SWPORT_DR_REG(pin), write_mask | data); } static void rk_gpio_v2_pin_ctl(void *priv, int pin, int flags) { struct rk_gpio_softc * const sc = priv; uint32_t ddr; KASSERT(pin < __arraycount(sc->sc_pins)); /* No lock required for writes on v2 controllers */ ddr = (flags & GPIO_PIN_OUTPUT) ? GPIOV2_DATA_MASK(pin) : 0; WR4(sc, GPIOV2_SWPORT_DDR_REG(pin), GPIOV2_WRITE_MASK(pin) | ddr); } static int rk_gpio_intr(void *priv) { struct rk_gpio_softc * const sc = priv; struct rk_gpio_eint *eint; uint32_t status, bit; int ret = 0; status = RD4(sc, GPIO_INT_STATUS_REG); if (status == 0) return ret; WR4(sc, GPIO_PORTA_EOI_REG, status); while ((bit = ffs32(status)) != 0) { status &= ~__BIT(bit - 1); eint = &sc->sc_eint[bit - 1]; if (eint == NULL || eint->eint_func == NULL) continue; if (!eint->eint_mpsafe) KERNEL_LOCK(1, curlwp); ret |= eint->eint_func(eint->eint_arg); if (!eint->eint_mpsafe) KERNEL_UNLOCK_ONE(curlwp); } return ret; } static void * rk_intr_enable(struct rk_gpio_softc *sc, u_int pin, uint32_t level, uint32_t polarity, bool mpsafe, int (*func)(void *), void *arg) { uint32_t val; struct rk_gpio_eint *eint; mutex_enter(&sc->sc_lock); if (sc->sc_eint[pin].eint_func != NULL) { mutex_exit(&sc->sc_lock); return NULL; /* in use */ } eint = &sc->sc_eint[pin]; eint->eint_func = func; eint->eint_arg = arg; eint->eint_mpsafe = mpsafe; eint->eint_num = pin; val = RD4(sc, GPIO_INTTYPE_LEVEL_REG); if (level) val |= 1 << pin; else val &= ~(1 << pin); WR4(sc, GPIO_INTTYPE_LEVEL_REG, val); val = RD4(sc, GPIO_INT_POLARITY_REG); if (polarity) val |= 1 << pin; else val &= ~(1 << pin); WR4(sc, GPIO_INT_POLARITY_REG, val); val = RD4(sc, GPIO_INTEN_REG); val |= 1 << pin; WR4(sc, GPIO_INTEN_REG, val); #if 0 /* Configure eint mode */ val = R4(sc, SUNXI_GPIO_INT_CFG, pin); val &= ~SUNXI_GPIO_INT_MODEMASK(eint->eint_num); val |= __SHIFTIN(mode, SUNXI_GPIO_INT_MODEMASK(eint->eint_num)); GPIO_WRITE(sc, SUNXI_GPIO_INT_CFG(eint->eint_bank, eint->eint_num), val); val = SUNXI_GPIO_INT_DEBOUNCE_CLK_SEL; GPIO_WRITE(sc, SUNXI_GPIO_INT_DEBOUNCE(eint->eint_bank), val); /* Enable eint */ val = GPIO_READ(sc, SUNXI_GPIO_INT_CTL(eint->eint_bank)); val |= __BIT(eint->eint_num); GPIO_WRITE(sc, SUNXI_GPIO_INT_CTL(eint->eint_bank), val); #endif mutex_exit(&sc->sc_lock); return eint; } static void rk_intr_disable(struct rk_gpio_softc *sc, struct rk_gpio_eint *eint) { uint32_t val; KASSERT(eint != NULL && eint->eint_func != NULL); mutex_enter(&sc->sc_lock); /* Disable eint */ val = RD4(sc, GPIO_INTEN_REG); val &= ~__BIT(eint->eint_num); WR4(sc, GPIO_INTEN_REG, val); WR4(sc, GPIO_INT_STATUS_REG, __BIT(eint->eint_num)); sc->sc_eint[eint->eint_num].eint_func = NULL; mutex_exit(&sc->sc_lock); } static void * rk_fdt_intr_establish(device_t dev, u_int *specifier, int ipl, int flags, int (*func)(void *), void *arg, const char *xname) { struct rk_gpio_softc * const sc = device_private(dev); bool mpsafe = (flags & GPIO_INTR_MPSAFE) != 0; uint32_t level, polarity; const uint32_t pin = be32toh(specifier[0]); const uint32_t type = be32toh(specifier[1]) & 0xf; switch (type) { case FDT_INTR_TYPE_POS_EDGE: level = 1; polarity = 1; break; case FDT_INTR_TYPE_NEG_EDGE: level = 1; polarity = 0; break; case FDT_INTR_TYPE_HIGH_LEVEL: level = 0; polarity = 1; break; case FDT_INTR_TYPE_LOW_LEVEL: level = 0; polarity = 0; break; default: aprint_error_dev(dev, "%s: unsupported irq type 0x%x\n", __func__, type); return NULL; } return rk_intr_enable(sc, pin, level, polarity, mpsafe, func, arg); } static void rk_fdt_intr_disestablish(device_t dev, void *ih) { struct rk_gpio_softc * const sc = device_private(dev); struct rk_gpio_eint * const eint = ih; rk_intr_disable(sc, eint); } static bool rk_fdt_intrstr(device_t dev, u_int *specifier, char *buf, size_t buflen) { if (!specifier) return false; const u_int pin = be32toh(specifier[0]); if (pin < 0 || pin >= 32) return false; snprintf(buf, buflen, "GPIO %d", pin); return true; } static void rk_fdt_intr_mask(device_t dev, void *ih) { struct rk_gpio_softc * const sc = device_private(dev); void * const gpio = device_private(sc->sc_gpiodev); gpio_intr_mask(gpio, ih); } static void rk_fdt_intr_unmask(device_t dev, void *ih) { struct rk_gpio_softc * const sc = device_private(dev); void * const gpio = device_private(sc->sc_gpiodev); gpio_intr_unmask(gpio, ih); } static struct fdtbus_interrupt_controller_func rk_gpio_intrfuncs = { .establish = rk_fdt_intr_establish, .disestablish = rk_fdt_intr_disestablish, .intrstr = rk_fdt_intrstr, .mask = rk_fdt_intr_mask, .unmask = rk_fdt_intr_unmask }; static void * rk_gpio_intr_establish(void *vsc, int pin, int ipl, int irqmode, int (*func)(void *), void *arg) { struct rk_gpio_softc * const sc = vsc; bool mpsafe = (irqmode & GPIO_INTR_MPSAFE) != 0; int type = irqmode & GPIO_INTR_MODE_MASK; uint32_t level, polarity; switch (type) { case GPIO_INTR_POS_EDGE: level = 1; polarity = 1; break; case GPIO_INTR_NEG_EDGE: level = 1; polarity = 0; break; case GPIO_INTR_HIGH_LEVEL: level = 0; polarity = 1; break; case GPIO_INTR_LOW_LEVEL: level = 0; polarity = 0; break; default: aprint_error_dev(sc->sc_dev, "%s: unsupported irq type 0x%x\n", __func__, type); return NULL; } return rk_intr_enable(sc, pin, level, polarity, mpsafe, func, arg); } static void rk_gpio_intr_disestablish(void *vsc, void *ih) { struct rk_gpio_softc * const sc = vsc; struct rk_gpio_eint * const eint = ih; rk_intr_disable(sc, eint); } static bool rk_gpio_intrstr(void *vsc, int pin, int irqmode, char *buf, size_t buflen) { if (pin < 0 || pin >= 32) return false; snprintf(buf, buflen, "GPIO %d", pin); return true; } static void rk_gpio_intr_mask(void *priv, void *ih) { struct rk_gpio_softc * const sc = priv; struct rk_gpio_eint * const eint = ih; uint32_t val; val = RD4(sc, GPIO_INTMASK_REG); val |= 1 << eint->eint_num; WR4(sc, GPIO_INTEN_REG, val); } static void rk_gpio_intr_unmask(void *priv, void *ih) { struct rk_gpio_softc * const sc = priv; struct rk_gpio_eint * const eint = ih; uint32_t val; val = RD4(sc, GPIO_INTMASK_REG); val &= ~(1 << eint->eint_num); WR4(sc, GPIO_INTEN_REG, val); } static void rk_gpio_attach_ports(struct rk_gpio_softc *sc) { struct gpiobus_attach_args gba; u_int pin; for (pin = 0; pin < __arraycount(sc->sc_pins); pin++) { sc->sc_pins[pin].pin_num = pin; sc->sc_pins[pin].pin_caps = GPIO_PIN_INPUT | GPIO_PIN_OUTPUT; sc->sc_pins[pin].pin_state = rk_gpio_pin_read(sc, pin); } memset(&gba, 0, sizeof(gba)); gba.gba_gc = &sc->sc_gp; gba.gba_pins = sc->sc_pins; gba.gba_npins = __arraycount(sc->sc_pins); sc->sc_gpiodev = config_found(sc->sc_dev, &gba, NULL, CFARGS_NONE); } static int rk_gpio_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void rk_gpio_attach(device_t parent, device_t self, void *aux) { struct rk_gpio_softc * const sc = device_private(self); struct gpio_chipset_tag * const gp = &sc->sc_gp; struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; char intrstr[128]; struct clk *clk; bus_addr_t addr; bus_size_t size; uint32_t ver_id; int ver; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL || clk_enable(clk) != 0) { aprint_error(": couldn't enable clock\n"); return; } sc->sc_dev = self; sc->sc_bst = faa->faa_bst; if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } gp->gp_cookie = sc; ver_id = RD4(sc, GPIO_VER_ID_REG); switch (ver_id) { case 0: /* VER_ID not implemented in v1 but reads back as 0 */ ver = 1; gp->gp_pin_read = rk_gpio_pin_read; gp->gp_pin_write = rk_gpio_pin_write; gp->gp_pin_ctl = rk_gpio_pin_ctl; gp->gp_intr_establish = rk_gpio_intr_establish; gp->gp_intr_disestablish = rk_gpio_intr_disestablish; gp->gp_intr_str = rk_gpio_intrstr; gp->gp_intr_mask = rk_gpio_intr_mask; gp->gp_intr_unmask = rk_gpio_intr_unmask; break; case GPIO_VER_ID_GPIOV2: ver = 2; gp->gp_pin_read = rk_gpio_v2_pin_read; gp->gp_pin_write = rk_gpio_v2_pin_write; gp->gp_pin_ctl = rk_gpio_v2_pin_ctl; /* XXX */ break; default: aprint_error(": unknown version 0x%08" PRIx32 "\n", ver_id); return; } mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM); aprint_naive("\n"); aprint_normal(": GPIO v%d (%s)\n", ver, fdtbus_get_string(phandle, "name")); fdtbus_register_gpio_controller(self, phandle, &rk_gpio_funcs); rk_gpio_attach_ports(sc); WR4(sc, GPIO_INTEN_REG, 0); if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error_dev(self, "failed to decode interrupt\n"); return; } sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, FDT_INTR_MPSAFE, rk_gpio_intr, sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(self, "failed to establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(self, "interrupting on %s\n", intrstr); fdtbus_register_interrupt_controller(self, phandle, &rk_gpio_intrfuncs); }